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Preface

Computer Vision is the most important key in developing autonomous navigation systems 
for interaction with the environment. It also leads us to marvel at the functioning of our own 
vision system. In this book we have collected the latest applications of vision research from 
around the world. It contains both the conventional research areas like mobile robot naviga-
tion and map building, and more recent applications such as, micro vision, etc.  
The fist seven chapters contain the newer applications of vision like micro vision, grasping 
using vision, behavior based perception, inspection of railways and humanitarian demining. 
The later chapters deal with applications of vision in mobile robot navigation, camera cali-
bration, object detection in vision search, map building, etc.  
We would like to thank all the authors for submitting the chapters and the anonymous re-
viewers for their excellent work. 
Sincere thanks are also due to the editorial members of Advanced Robotic Systems publica-
tions for all the help during the various stages of review, correspondence with authors and 
publication. 
We hope that you will enjoy reading this book and it will serve both as a reference and 
study material. 

Editors

Goro Obinata 
Centre for Cooperative Research in Advanced Science and Technology 

Nagoya University, Japan 

Ashish Dutta 
Dept. of Mechanical Science and Engineering  

Nagoya University, Japan 
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Micro Vision 

Kohtaro Ohba and Kenichi Ohara 
National Institute of Advanced Industrial Science and Technology (AIST) 

Japan 

1. Introduction      

The observational and measurement system in the micro environments to manipulate 
objects in the micro world is becoming necessary in many fields, such as manufacturing; 
“Micro Factory (Fig.1)”;one of the past Japanese national project, and medical usages; the 
micro surgery. Most of the past researches in the micro environments might be only focused 
on the micro manipulation but not on the micro observation and measurement, which might 
be very important to operate. Actually, the micro operation includes the scale factors; i.e. the 
van der Waals forces are larger than the Newton force in the micro environments. 
Furthermore the micro vision has the “optical scale factors” on this micro observation, i.e. 
the small depth of a focus on the microscope, which could not allow us to feel the micro 
environments, intuitively.  
For example, if the focus is on some objects in the microscope, the actuator hands could not 
be observed in the same view at the same time with the microscope. On the other hand, if 
the focus is on the actuator hands, the object could not be observed. Figure 2 shows a simple 
3D construction example constructing a micro scarecrow, 20um height, with 4 um six grass 
balls and one grass bar on the micro wafer. And Fig.3 show the two typical microscopic 
views putting the second glass ball onto the first glass ball. Left figure (a) in Fig.3 shows the 
first glass ball in focused, but the gripper is blurring at almost same position, because of  the 
different depth. And right figure (b) shows the gripper in focused.  Therefore, the operator 
has to change the focal distance with the microscope to observe while operating the micro-
actuator, simultaneously.

Figure 1. Micro Factory 
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Figure 2. Micro Scarecrow 

       
(a)                                                                              (b) 

Figure 3. Typical Microscopic Images with Micro Manipulation 

 Even though the big effort of the micro vision for the micro operation, there are few 
computer vision researches especially for the micro environments.  
In the micro vision system, there could be categorized into two areas, 
1. The micro measurements techniques to measure the micro object position for micro 

operation.
2. The micro observation techniques to show the 3D image only for human to know the 

interesting objects.  
We will summarize these two areas into the following two sections. 
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2. Measurement Method for Micro Objects in Micro Environment 

In the field of the computer vision, there are several 3D modelling criteria, so called “shape 
from X'' problem. Most of these criteria are categorized as follows, 
• the Shape from Triangular Surveying, 
• the Shape from Coherence, 
• the Shape from Time of Flight, 
• the Shape from Diffraction, 
• the Shape from Polarization.[1][2], 
• And the shape from Focus/Defocus [3][4][5][6]. 
Each method has particular characteristics with algorithm, speed, range and resolution of 
measurements.
In the macro environments, the triangular surveying is mainly applied for the robotics, 
because of the simply to use. But it requires more than one set of two cameras or laser 
equipments to measure and soft/hard calibration, and big calculation cost in correlation 
with two images. Furthermore in the micro environments, because of the small depth of 
fields, the measurements range is quite limited in the cross in focus depth area of the two 
cameras. 
Generally speaking, we have the “small depth of a focus” is one of the drawbacks for the 
micro operation with the microscope, as mentioned before. However, as the matter of fact, 
this small depth of a focus is one of the big benefits for the vision system to obtain the good 
resolution of the depth with the “shape from focus/defocus” criteria. In this section, the 
measurement method based on characteristics of the micro environment is mainly 
discussed. Secondly, the real-time micro VR camera system is reviewed with the two main 
factors.

2.1 Optics 

The “depth from focus” criterion is based on the simple optical theory, which is focused on 
the depth of a focal range in the optical characteristic. Theoretically, the “depth of a focus” 
and the “depth of a photographic subject” are different as shown in Fig. 4. In this section, 
the optical criteria are briefly reviewed.  
The optical fundamental equation: 

fxX
111 =+ , (1) 

is well known as the Gaussian lens law. In this equation, X, x and f depict the object 
distance, the image distance and the focal distance of the lens, respectively.  
Then, in the “depth of a focus”, xΔ  is defined as the range of the distance of focal plane, 
which holds the image in focus on the focal plane, as shown in Fig. 4 (a).  

 Infinity: 
D
fx δ2=Δ  (2) 

 Finite: 
'

2
D
fx δ=Δ   (3) 
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where D and D' are the diameter of lens and the iris, respectively. The focus obviously 
depends on the radius of the circle of confusion delta, which caused by the resolution of the 
sensor device of camera.  
The “depth of a photographic subject”; XΔ  is defined as the range of the distance between 
object and lens as shown in Fig. 4 (b), which holds the sharpness on the focal plane;  

2222 )(

)(2

fXDf
fXXfDX

−−
−=Δ

δ
δ

 (4) 

In this equation, the depth of a photographic subject obviously depends on the distance of 
principle focus f and the distance between object and lens X.
Equation (2) or (3) decides the resolution of object distance with the depth of focus criteria. 
In the calibration process between the object distance and the image plane distance, the 
equation (4) is utilized. 

Figure 4. Depth of a focus and Depth of Photographic Subject 
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Figure 5. Concept Image of how to obtain the all-in-focus image 

2.2 Depth from Focus Criteria 

Figure.5 shows the concept of the “depth from focus” criteria based on the optics above. 
Each image points hold the optical equations (1). If several numbers of images are captured 
with the different image distances, then optimal in-focus point at each image points could be 
defined with the optical criteria. Then, the 3D object construction could be obtained with 
equation (1) of “image distance”; x or “focal distance”; f value at each pixel. Also, 
synthesized in-focus image could be obtained with mixing the in-focus image areas or 
points, which we call “all-in-focus image”. 
Actually, this criteria is quite simple but useful especially in the microscopic environments. 
However, the bad resolution with this criterion on the long distance, more than 2m, is well 
known because of the large “depth of a photographic subject” with the ordinal optical 
configuration on large objective distance.   
Further more, the depth from defocus criteria is well known to estimate the 3D construction 
with several blurring images and optical model. It is not necessary to move the focal 
distance in the process of 3D reconstruction, but could not achieve the all-in-focus image, 
which might be important for the 3D virtual environments. In this section, “Depth from 
Focus Theory” is focused. 

2.3 Image Quality Measurement 

In the previous section, the optimal focal distance with particular objects could be obtained 
with the optical criteria. In this section, the criterion to decide the optimal focal distance 
with the image processing technique is reviewed.  
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To decide the optimal focal distance with images, the Image Quality Measure (IQM), which 
could detect the in-focus area in the image, is defined with the follow equation, 

= = −= −=

++−=
f

i

f

i

c

c

r

r

x

xx

y

yy

L

Lp

L

Lq
qypxIyxI

D
IQM ),(),(

1
 (5) 

where ( ) ( )rcrc LLLL ,, −−−  and ( ) ( )ffii yxyx ,, − are the area for the evaluation of 

frequency and the smoothing, respectively [7].And D is the total pixel number to make 
standard the image quality measure value with the number of pixels in the area 
( ) ( )rcrc LLLL ,, −−− and ( ) ( )ffii yxyx ,, − .

With some variation of the focus values, once a peak of the IQM value at particular position 
of image pixel is detected, the optimal in-focus image point on each pixel points could be 
easily defined. Then the corresponding local intensity value and the focus value are finally 
the depth map and the all-in-focus image, respectively.   

2.3 Real-time micro VR camera system 

To realize the real-time micro VR camera system with the depth from focus criteria above, 
there are two big issues to be solved,  
1. how to capture and process the high frame rate image sequences (vision part),  
2. how to change the focal distance with high frequency and high accuracy(optical part). 
Unfortunately, most of the vision system seems to be based on the video frame rate 
30frame/sec. This video frame rate is good enough for human vision, but not good enough 
as a sensor system.  
To realize a real-time micro VR camera with the depth from focus criteria mentioned before, 
a high-speed image capture and processing system is required. For example, if eight images 
are applied to obtain the depth map and the all-in-focus image with 30frame/sec, a 240 
frame/sec image sequence is necessary to capture and process.   
 Furthermore, to change the focal distance with the microscope, motor control system could 
be used. But the range of frequency of the motor system is not enough frequency for the 
real-time micro VR camera system. 
Next, section, we will show some of the proto type of the real-time micro VR camera 
systems, Finally product specification of Micro VR Camera System is shown. 

2.3.1 First Prototype 

At first, we developed the micro VR camera system shown in Fig.6 with a dynamic focusing 
lens[8] as shown in Fig. 7 and a smart sensor, an IVP C-MOS vision chip (MAPP2200) that 
has a resolution of 256*256pixel, a column parallel ADC architecture, and DSP processing.  
A sample object in Fig. 8 and its sample images at four particular focal distances are shown 
in Fig. 9. The objects for demonstration were constructed in a four-step pyramidal shape: 
first stage, φ 10mm height 10mm; second, φ 7mm-10mm; third, φ 4mm-10mm; and top, φ
3mm-5mm. In real-usage cases, such as less than 1 mm size, the IQM value could be 
obtained with the original texture on the object without any artificial texture. 
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Figure 6. Micro VR Camera System 

Figure 7. Dynamic Focusing Lens 



Vision Systems: Applications 8

Figure 8. Sample Object for Evaluation of Micro VR Camera System 

Figure 9. Sample of the Single Focus Image 
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The spatial resolution depends on the optical setting. For this demonstration, the view area 
is almost 16mm square with 256 pixels, and the spatial resolutions are 62.5um.  The depth 
resolution is 1.67mm (21 frames with 35mm depth range, each 3V input voltage from -30V to 
+30V to charge the PZT), which directly depends on the number of input frames in the 
range of variable focusing. The “all-in-focus image” and the micro VR environments from 
one image sequence are shown in Fig. 10 and 11, respectively. The “all-in-focus image” gives 
a clear image to observe the whole object. However, the resolution of depth without any 
interpolation in Fig.11 does not seem enough. A simple way to increase the resolution of 
depth is to capture more images with other focal distances, which could also require a 
higher calculation cost.  
(a) Processing Part 
The processing time with an IVP chip is almost 2sec. for one final VR output. This is caused 
because the ADC/processing performance is not good enough for the gray level intensity on 
the vision chip MAPP2200.  Actually, MAPP2200 has a good performance for binary images 
of more than 2000frame/sec.  
(b) Optical Part 
Changing the focus with usual optical configuration is quite difficult to actuate because of 
its dynamics. We had developed a compact and quick-response dynamic focusing lens, 
which is including the PZT bimorph actuator and the glass diaphragm shown in Fig. 7. This 
lens is capable to be a convex lens or concave lens with the voltage to drive the PZT 
bimorph, and was evaluated the robustness with more than 150Hz high frequency. See 
details in [10]. We applied this lens with the combination of the micro zoom lens. 

Figure 10.  Sample of All-in-Focus image 
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Figure 11. Sample of the Depth Image for Sample Object with Texture Based on All-in-Focus 
Image 

2.3.2 Second Prototype

This paragraph shows the second prototype of the micro VR camera systems. 
(a) Processing Part 
Recently, the large-scale FPGA (Field Programmable Gate Array) has dramatically 
improved its performance and is being widely used because of its programmable capability.  
Then, in the second system shown in Fig.12, one FPGA (APEX EP20K600E, ALTERA) and 
SDRAM in the image-processing test board (iLS-BEV800, INNOTECH Co.) are used to 
calculate the IQM in equation (5) at each pixel all over image 512*480 pixel, 8bits with 
240Hz, which has the TMDS (Transition Minimized Display Signaling) architecture interface 
to connect the sensor part and processing part as shown in Fig.13. Then, the image data 
512*480 is captured with two parallel interfaces, and high-speed transmission 60Mbyte/sec 
(512*480*240Hz) from HSV to the dual-port SDRAM is realized. As a result, the performance 
of the FPGA is good enough to calculate the IQM value with 240Hz, and the total execution 
performance is less than 20% of the performance of FPGA.

Figure 12. Sencond Prototype Systems 
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Figure 13. System Configuration 
(b) Optical Part 
A micro-zoom lens (Asahi Co. MZ-30, f=27.2-58.5mm, F7.5) with a dynamic focusing lens, 
the same as that used in our earlier system, is attached on the HSV. The dynamic focusing 
lens is controlled by FPGA through DA converter and Amplitude as mentioned in the first 
prototype. The relation between the input voltage to PZT and the objective distance is 
evaluated linearly in the range from 147mm to 180mm, corresponding to the input voltage 
from -30V to +30V in previous section. The resolution of the objective distance appears to 
increase with the objective distance. We apply 30Hz one-way ramp input to control the 
dynamic focusing lens, as shown in Fig.14, which may cause a hysteresis problem with 
round-trip input. However, a noisy image is observed in the first step because of the 
overshoot of the lens. To solve this problem, we planned to use seven images without the 
first image.  

Figure 14. Ramp Input. 
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Figure 15. Sample Image of Second Prototype System 

The spatial resolution in this system is 31.25mu, 16mm/512pixel. The depth resolution is 
5.0mm (7 frames with 35mm depth), which can be improved with the input frame number.  
Up to now, the all-in-focus image and the depth image are stored in each memory space and 
could be separately observed with a VGA monitor through the analog RGB output. The VR 
display might be realized in a PC after the all-in-focus and depth images are transmitted 
into the PC directly. 

2.3.3 Microscopic System 

For real micro-applications, a microscopic system is developed with the processing part 
mentioned before, as shown in Fig.16. Instead of using a dynamic focusing lens, the PIFOC 
microscope objective nano-positioners and scanners P-721.20, PI-Polytec Co. are controlled 
by a high-speed nano-automation controller E-612.C0, PI-Polytec Co. and attached to a 
microscope, BX60, Olympus Co., to reduce the zoom factor with the dynamic focusing lens.     
The focus length is controlled to achieve a maximum of 0-100 um as the actuator input 
voltage 0-10V 30Hz ramp input from the FPGA. The real position could be observed with 
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the sensor output from the controller. Actually, this system has no scaling factor on the 
images with different depth, because the image distance is changed with the scanner, 
besides the focal distance is changed in our earlier system with the variable focusing lens. 
You can observe two glass fabrics  4 um, each located in micro-3D environments with  

Figure 16. Micro Scopic System for Micro Application 

optical magnitude 50X in the microscope. One fabric is located at a near distance, and the 
other is at a far distance. Figure 17 shows the usual focus images scanning the focus length 
from 0 um to 90 um. The near fabric is in focus in Figure 17(e), and the far fabric is in focus 
in Figure 17(h).  The spatial resolution in this system is 0.195 um 100 um 512pixel. The 
maximum depth resolution is 0.781 um, 100 um128 bits. Figure 18 shows the all-in-focus 
image in the microscope. Compared with Fig.17, both fabrics can be seen in-focus in one 
view.
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Figure 17. Microscopic Images for fabrics 
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Figure 18. All-in-Focus Image with ghost 

Figure 19. All-in-Focus Image without ghost 
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Figure 20. A Comparison with Ghost-Filtering 

A detail analysis indicated that several blurring edges could be observed just around the 
objects in Fig.18. This ghost is caused by several out-of-focus images. In the microscope, the 
out-of-focus image makes a large blurring region around the real object's location, as can be 
seen in Fig.18. This blurring region could cause miss-recognition of the all-in-focus area 
around the objects.  To solve the ghost problem, the reliability of the IQM value should be 
evaluated to detect the real in-focus area. Then, the minimum IQM value; IQMmin is pre-
defined, which could hold the in-focus clearly in the particular image sequences.   

 In-focus-area: min),,( IQMfyxIQM ≥  (6) 

 background: otherwize  (7) 

where IQM(x,y,f) is the image quality value at image location; (x,y) with the focus length; f. 
Figures 19 and 20 show the result obtained with this ghost-filtering technique. 

2.3.4 Product System 

Now, Micro VR Camera System is productization by Photron co.ltd in Japan [9], which is 
shown in Fig. 21. This system is more improved about resolution, which is 512 * 512 pixels 
per one the depth image and all-in-focus image. Moreover, this system can measure object 
depth in a step of about 3um, when the user use piezo actuator to be able to move 100 um.  
Figure 22 shows sample results of the all-in-focus and depth image with the latest system.  
Actually, this output result is real-time movie on this system. Even though the operator put 
the gripper in sight, the in-focus image could allow us to observe the object and the gripper 
simultaneously, although they are located at different depths. 
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Figure 21.  Product system for the  Micro VR Camera 

   
 (a) All-in-Focus Image for MEMS device  (b) Depth Image  

Figure 22.  Sample View of MEMS device with the product system 
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3. Micro Observation 

In the previous section, micro measurement is describes. The micro observation system is 
introduced in this section.  
Generally speaking, because the small depth of focus factor is quite strong, the microscopic 
view is quite different from the macroscopic images. Actually, to know the micro 
phenomena and micro object shape, operator should change the focal distance of the 
microscope very often. Then operator summarizes each image information in his brain. 
If this summarize sequence could be obtained automatically, the operator could easily know 
the micro object phenomena and shape, intuitively.
This section mainly focuses on the algorithm to obtain the all-in-focus image in the micro VR 
Camera System, and the 3D voxel image, which has (R,G,B,alpha) parameter for each voxel, 
based on Micro VR Camera System. 

3.1 All-in-Focus Image 

 In the previous section, overview about how to obtain depth image and all-in-focus image 
is described. In this subsection, detail algorithm is shown as follows;  
1. Acquire a sequence of images while changing a focus distance using the PZT actuator. 
2. Calculate the Image Quality Measurement (IQM) value ( eq.(5) ) at each pixel on all of 

the acquired images, which might be the index for in-focus or out-focus. 
3. Find the maximum point on the IQM value considering the different focus distance at 

each pixel location; (x,y). 
4. Integrate the in-focused pixel values at maximum IQM points into an all-in-focus 

image, and the focus distance information into the depth map. 

Figure 23. Example of All-in-Focus Image about wire bounding 
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This system mainly applied to use the industrial usage as shown in Fig. 23. However, this 
algorithm has one big drawback in the case of the transparent object, such as crystal and cell 
in the biomedical usage, because there might be several possibilities of in-focused points on 
the transparent object as shown in Fig. 24. In other words, if we apply to use this system for 
the biomedical use, the depth information might be quite noisy; sometime the maximum 
IQM value is on the top surface of the object, but in other case, in-focused points is on the 
other back surface. 

Figure 24. Example of the transparent object for micro application 

3.2 Volume Rendering Method based on Image Quality Measurement 

The micro VR camera system, mentioned before, could be mainly applied to use for 
industrial objects as shown in Fig. 23, not for the biomedical objects, such as transparent 
objects, which is targets. 
Actually, in the algorithm of the all-in-focus image described in the previous section, the 
IQM value is calculated all over the image at each focus distance, but only one point of 
maximum IQM value at each pixel is selected for the all-in-focus image as shown in Fig. 5. 
In other words, most of the image information is trushed away to define the optimal focal 
distance. 
By the way, in the field of computer graphics, the volume rendering technique is widely 
used. In the case of color objects, each 3D point; i.e. the volume cell (voxel) image, holds 
intensity and transparent data set: V[RGB|P], where R, G, and B depict color intensity 
values and P is the transparency data at each voxel (x,y,z), to visualize the transparent 
objects.
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As the matter of fact in our previous researh, the image intensity data set could be already 
obtained while moving the focus distance in the micro VR camera system. 
Then, a new volume rendering based method shown in Fig. 25, which reflects the IQM value 
as transparency parameter P with the Look Up Table (LUT) and visualizes 3D transparent 
object, is proposed in this section, because of the fact that the IQM value might be the index 
of in-focused area. 
To realize the proposed method, the image intensity data and the IQM value at each focus 
distance with the previous micro VR camera system are stored in V[RGB|P] at each voxel 
(x,y,z) in the volume rendering system: VOLUME-PRO 500, and the volume rendering 
visualization could be obtained using the VGL library. 
 To show the validity of this proposed method, a 4μm glass ball including one bubble 
inside is applied to use. Fig. 26 shows the microscopic view of the glass ball at several focus 
distances, which is acquired with the AIF system while moving the focus distance.  
Then, the center view in Fig. 27 display a visualization results with the proposed method, 
and left side shows the slice view at any particular point. The shape of glass ball could be 
intuitively obtained in this figure, furthermore a bubble could be observed, even though any 
de-convolution technique is not utilized. The volume rendering tools “VGStudio MAX 1.1” 
is used in Fig. 27. In this viewer, we could chage the view angel, and change slice point for 
the slice view, as you want. 

Figure 25.  Volume Rendering Method based on Image Quality Measurement 



Micro Vision 21

Figure 26. Several Focus Images of 4um Grass Ball 

Each of these two methods for visualization have each goodness and drawback. The all-in-
focus image could show the intuitive object image, but most of the blurring images are 
trushed away. The volume rendaring technique could summarize the all images at each 
focal distance, but requires the volume rendaring viewers. 

Figure 27. Voxel Image Based on Several Image of Grass Ball 
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4. Conclusion 

In the field of the micro vision, there are few researches compared with macro environment. 
However, applying to the study result for macro computer vision technique, you can 
measure and observe the micro environment. Moreover, based on the effects of micro 
environment, it is possible to discovery the new theories and new techniques.   
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1. Introduction  

The ability to efficiently grasp an object is the basic need of any robotic system. This research 
aims to develop an active vision based regrasp planning algorithm for grasping a deforming 
2D prismatic object using genetic algorithms (GA). The possible applications of the 
proposed  method are in areas of grasping biological tissues or organs, partially occluded 
objects and objects whose boundaries change slowly. Most previous studies on robotic 
grasping mainly deal with formulating the necessary conditions for testing grasp points for 
static objects (Blake (1995), Chinellato et al. (2003), Galta et al. (2004), Mirtich et al. (1994)). 
Nguyen (1989) has suggested a strategy for constructing an optimal grasp using finger 
stiffness grasp potentials. A detailed review of multifinger grasping of rigid objects is 
presented in Bichi and Kumar (2000). There are few studies on grasping of deformable 
objects, such as Hirai et al. (2001) in which they present a control strategy for grasping and 
manipulation of a deformable object using a vision system. In this case the object deforms on 
application of  fingertip forces, the deformation is recorded by a vision systems and based 
on the amount of deformation the object motion is controlled. Studies relating to searching 
and tracking of grasping configurations for deforming object are rare. Deforming objects are 
those that deform by themselves without application of external forces. Mishra et al. (2006) 
have proposed a method of finding the optimal grasp points for a slowly deforming object 
using a population based stochastic search strategy. Using this method it is possible to find 
the optimal grasp points satisfying force closure for 2D prismatic deforming objects.  This 
method minimizes the distance between the intersection of fingertip normals and the object 
centre of gravity, and maximizes the area formed by the finger tip contact points. However 
their method fails in cases when the fingertip normals do not intersect at a point (as in case 
of a square object).  
The problem of grasping deforming objects is a very challenging problem as the object 
shape changes with deformation. Hence the optimal grasp points have to be continuously 
found for each new shape. This process of recalculating the fingertip grasp points due to 
object shape change, slide or roll is called regrasping. The best method of determining the 
change in shape of an object is by using a vision system.  A vision system not only captures 
the new shape but can also be used to track a moving object. The main objectives of this 
research are to use a vision system to capture the shape of a deforming object, divide the 
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object boundary into a number of discrete points (pixels) and then find the optimal grasp 
points satisfying form closure. As the object changes shape the new shape is continuously 
updated by the vision system and the optimal grasp points are found. Once the solution for 
the first frame is obtained this solution is used as the initial guess in subsequent cases for 
finding the optimal grasp points. This enables faster solutions for later frames recording the 
deformation of the object. It is assumed that the object deforms slowly, the contact between 
the fingertip and the object is frictionless and the fingers do not cause deformation of the 
object. Hence four fingers are required to grasp a prismatic object in 2D. Simulations were 
carried out on 200 synthetic shapes that deformed slowly and the optimal grasp points 
found. An experiment was conducted in which a deforming object was simulated by a piece 
of black cloth that was held from below and deformed. The shape change of the cloth was 
captured by a camera and for each shape the optimum gasp points were obtained. 
Experimental results prove that the proposed method can be used in real time to find the 
optimal grasp points for a deforming object. In section 2 the algorithm used for determining 
the optimal grasp points is explained.  The procedure for obtaining the regrasp solutions is 
discussed in section 3. Simulation results are explained in section 4, while the experimental 
setup is given in section 5. The experimental results are shown in section 6 and conclusions 
are drawn in section 7. 

2. Determining optimal grasp points using GA 

This section describes the concept of form closure using accessibility angle and the 
algorithm used to determine the optimal form closure grasp points. Form closure is a purely 
geometric constraint under which an object cannot escape in any direction after it is grasped 
by a number of frictionless fingertips. The mathematical conditions for obtaining form 
closure of an object by a multifinger hand are as given below (Yoshikawa, 1996): 
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Where T is the external forces and moment vector (total of six) acting at the centre of the 
object, ia  is the unit normal directed into the object at the fingertip contact points,  ip  is 

the position vector of the fingertip contact points on the object, and 1[ ...... ]nα α α= are the 
fingertip forces (n=total number of fingers). A necessary and sufficient condition for form 
closure are (i) rank D=6 and (ii) equation (1) has a solution such that α >0 (all forces are 
positive). Hence to obtain form closure in 3D we need seven contact points and in 2D we 
need four contact points. In this research we have proposed a geometrical method for 
finding the form closure grasps based on the concept of accessibility angle. The freedom 
angle (φ ) of a two dimensional objects is defined as the angular region along which it can 
be translated away from the contact. The concept of freedom angle is as shown in Figure 
1(a). It shows an object grasped with three contact points, for each individual contact point 
we define the direction (range) along which the object can move away from the contact 
points. The three freedom angles are as marked in the figure. Figure 1(b) show that after 
combining all the freedom angles there is still an angle left (escape angle) from where the 
object can escape. Hence it can be derived that the object is not in form closure. Figure 2(a) 
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show the same object with four contact points and the corresponding freedom angles. In 
figure 2(b) it can be seen that all the total 360˚ are covered and hence the object is in form 
closure. If ‘x’ represents the position vector at a point on the object surface then the freedom 
angle “ iφ ”at that point is computed as: 

1 1{ ( ), ( )}i i i i ix x x xφ + −= ∠ − ∠ −

1 2{ ..... }nψ φ φ φ= ∩ ∩

The accessibility angle is the common angle between all the freedom angles. The 
accessibility angle (ψ ) (Sharma et al. (2006)) is calculated as shown in Figure 2(b). An object 
is in form closure if the accessibility angle is the null set (or escape angle is zero). This means 
that there is no way the object can move away (translate or rotate) from the gripper points. 

freedom
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finger 
contact

                                                  (a)                                                 (b) 
Figure 1. (a) The freedom angles showing the directions in which the object can move with 
respect to each individual finger contact, (b) direction in which the object is free to  escape 
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   (a)    (b) 
Figure  2. (a) The direction in which the object can move with respect to each finger contact,  
(b) the object cannot escape in any direction as there is no escape angle 

Hence the method essentially searches for the best from closure grasp points by comparing 
all sets of four grasp points satisfying conditions of form closure. As the object boundary is 
made up of a very large number of points (pixels) and a good form closure grasp is desired 
this search is quite complex. Also as the search involves discrete points an efficient method 
to solve the problem is to use genetic algorithms. 
GA is used to maximize an objective function subject to constraints. A traditional GA, like 
Gordy (1996), performs three operations on a population of genomes i.e. selection, crossover 
and mutation. The length of the binary string is equal to the number of discrete points on 
the object boundary. If a finger is present at a particular point then ‘1’ is present or it is ‘0’. 
The binary string encoding the object boundary  is as shown in Figure 3 . 
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010000000010000000000100……….0000001000000
Figure 3. Binary string (1 means finger present at that location, 0 means no finger present) 

Selection is performed to choose better individuals for cross-over. In Gordy (1996), selection 
is performed using the roulette wheel procedure. If an individual has better fitness, its 
probability of getting selected is more. In this selection process, cumulative sum of the 
fitness of all individuals in the population is calculated and normalized by dividing it with 
the total sum of the fitness of individuals in the population. A random number between 0 
and 1 is chosen. If that number lies within the span of normalized cumulative sum of any 
individual, that individual is selected. An individual can be selected multiple times based 
on how fit it is. Once the number of individuals equal to the original population size is 
selected into the mating pool, a single point crossover is performed. A split point is 
randomly generated and contents of the two individuals are swapped about this split point. 
Post crossover, mutation is performed with a very low probability. Each individual is 
scanned through and a gene is randomly mutated if the probability is lower than the 
mutation probability. Thus, a new population of vectors is obtained and individual fitness is 
computed. Finally, eliticism is invoked by replacing the worst individual of the new 
population with the best from the previous population.
The two conditions needed to be satisfied in order to get a good grasp are: a) the fingertips 
must be capable of resisting all the external forces and moment acting on the object and b) 
the placement of the fingers should be such that the moment applied is minimum. The 
proposed objective function maximizes the moment that the fingertips can resist, by 
considering different combination of fingertip positions taking four discrete points at a time. 
The constraint uses accessibility angle to ensure that all the feasible solutions satisfy form 
closure. If the accessibility angle is zero it means that the object is in form closure. In case the 
constraint is not met, a very high penalty is placed on the function value that eliminates the 
non-feasible solutions. The objective function used is given by: 
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The first part of the right side of equation (2) is the objective function while the second part 
is the constraints.  Mcw is the total clockwise moment and Mccw is the total anticlockwise 
moment applied by the fingers. These two terms ensure that the individual moments are 
maximized in both the clockwise and anticlockwise directions. This indirectly leads to 
minimum normal forces at the contact. Ncw and Nccw are the number of fingers applying 
clockwise and anticlockwise moment. This ensures that the fingers are placed all around the 
object and do not get concentrated at one location. A term ‘ ’ having a small value (0.01) has 
been added to ensure that the denominator does not become zero when both the 
anticlockwise and clockwise moments are equal. The constraints used are U=[ui] and V=[vi]
which are given as : 
1. u1=0 If total number of contact points is four ,  else u1=1; 
2. u2=1 If area formed by contact points equals zero, else u2=0; 
3. u3=0 If Both clockwise and anticlockwise moments exist, else u3=1; 
4. u4=0 If object is in form closure, else u4=1; 
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‘vi’ = - 1x1020 (i=1…4),  hence if the constraints are not met the function  takes a very high 
value and that particular solution is rejected. The normal function values for feasible grasp 
points are approximately 6.5x103 and hence the large negative value of ‘vi’ ensures that non-
feasible solutions are rejected. In this way feasible solutions move towards feasible space 
and the non feasible solutions are eliminated.  

3. Regrasp of deforming objects 

This section describes how regrasp solutions are obtained as the object deforms. The optimal 
grasp points depend on the geometry of the object and the solution for the first frame is 
obtained using a random guess as the initial solution in the GA routine. Hence this solution 
takes the largest time for convergence. Once the initial solution is obtained, it is used as the 
initial guess in the next search.  As the object deforms the vision system obtains the next 
shape of the object in terms of pixel boundary points.  These discrete points form the new 
GA design variable and the earlier solution is used as an initial guess. The object deforms 
very slowly and hence the shape changes slowly. This property ensures that the new grasp 
points are in the neighborhood of the earlier optimal grasp points and are not random. 
Hence it was found that the time for finding an optimal solution rapidly decreases in 
subsequent searches once an initial solution is found.  

4. Simulation 

The proposed regrasp algorithm has been tested on 200 types of synthetic shapes that 
undergo slow deformation. Simulations were performed on a 1.86 GHz laptop computer 
with 512 RAM.  We have assumed that the objects deforms slowly as the algorithm takes 
time (secs) to obtain a solution.  An example of slow deformation is a rectangle that can 
slowly expands each side to become an octagon etc. However a rectangle cannot suddenly 
become a circle. This assumption is practical as an expanding object like a balloon does not 
change shape suddenly. The simulation was made in Matlab in which a closed object was 
constructed using straight lines segments. Each time a side of the object was expanded by 
dividing it into two or more segments and expanding it. In case of real objects the sides can 
be approximated by straight lines and hence this method can be used to approximately 
simulate deformable objects. A few sample cases of an object expanding are shown in Figure 
4. As shown, an object (a) deforms to object (b), then (c) etc. by expanding one side at a time 
(all intermediate steps are not shown). The GA parameters used are: 
1. Size of generation 60 
2. Crossover 0.80 
3. Mutation 0.12 
4. Maximum number of iteration 5000 
5. Maximum number of gains before stopping 1000  
The time required to find the regrasp points was found in two ways for each object. In Case-
I the time was found independently for each deforming object. There was no initial guess 
solution supplied to the algorithm. In Case II the time to get a solution was found by 
supplying the earlier solution as an initial guess to the algorithm. In both the cases for the 
same objects the four optimal finger positions were same but the time to get a solution was 
different, as shown in Table 1. It was seen that in Case II the time required to get each 
solution was very much less than in Case I. This can be explained by the fact that as the 
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object deforms the optimal grasp points are not random but are related to the shape of the 
object.

(a) (b) 

(c) (d) 

(e) (f) 

Figure.4. (a-f) Optimal grasp points for a slowly deforming object (the fingertip contact 
points are indicated by solid circles) x and y axis are in mm 

Object No. 1 2 3 4 5 6 
Case I Time(secs) 53 75 61 67 74 73 
Case II Time (Sec) 53 37 23 31 21 24 

Table 1. Comparison of time taken for calculating optimal grasp points for Case I and II 

5. Experimental details

The experimental system (as shown in Fig 5) consists of a vision camera, a slowly deforming 
object, a PC with image processing software and a laptop PC on which the GA based 
algorithm runs. The deforming object was a piece of black cloth that was deformed by 
holding it from below and deforming it. The image was captured by a black and white CCD 
camera model ‘SB-6B’ manufactured by Wireless Tsukamoto Co., Japan. The camera can 
capture frames at a rate of 30 fps and each frame has a resolution of 100x100 pixels. The 
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number of pixels determines the total number of discrete points on the object boundary that 
are considered by the binary string in the GA algorithm. Hence increasing the number of 
pixels in a frame increases the resolution of the picture but it also increases the time required 
for computation as the length of the binary string will be longer. It was found that using 
100x100 pixels per frame gave satisfactory results and the image was captured at intervals of 
10 seconds. The sequence of images captured of the deforming object is shown in Figure 6. 
Thresholding was used to segment each image into the foreground and background based 
on different pixel intensities.  The input was a grey scale image and the output was a binary 
image representing segmentation. The boundary of the segmented image was obtained by 
using edge detection as shown in Figure 7. After the edge is detected the coordinate of all 
the pixels with reference to a reference coordinate frame was found. These coordinates of 
the object boundary pixels are then passed on to the GA based algorithm for calculating the 
best grasp points. 

Cam era

Laptop 
w ith GA 
a lgorithm

PC w ith 
im age 
processing 
software

deform ing object

Figure 5. The experimental setup 

(a) (b) (c) (d) 

Figure 6. (a-d) Image sequence of the deforming object 

(a) (b) (c) (d) 
Figure 7. (a-d) The edge of the deformed objects 
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6. Experimental results 

The pixel coordinates of the boundary of the deforming object as obtained by the image 
processing software was input to the GA based grasping algorithm. Computations were 
performed on a 1.86 GHz laptop computer with 512 RAM. The results of the experiments 
are as shown in Figure 8. Each figure corresponds to the frame obtained by the vision 
camera in Figure 6. The GA parameters used in the algorithm are same as those used in the 
simulations. The optimal grasp points for the first frame were obtained by using a random 
initial guess solution in the GA algorithm. Subsequent solutions were obtained by using the 
previous solutions as the initial guess. Table 2 shows the time required to get each solution 
and it is again seen that the first frame required the most time. 

 Object No. (a) (b) (c) (d)
Time (secs) 46 22 27 25 

Table 2. Time required for computing the grasp points 

(a) (b) 

(c) (d) 

Figure 8. (a-d) The optimal grasp points for each of the deforming objects (x and y 
coordinates in mm)  

6.1 Real time application 

One of the potential uses of the proposed method is an application in which an autonomous 
multifinger robot with a vision camera has to capture a deforming object. In such 
applications the time from image capture to obtaining the optimal grasp points has be done 
in real time (in a few seconds). As shown earlier, the time required to get the first solution 
was the highest as it depended on parameters like, initial guess solution, total number of 
iterations and the total iterations before stopping if gains are not exceeded. Hence faster 
solutions can be obtained by dynamically tuning these parameters. Figure 9 shows two 
solutions for the same object obtained by varying the GA parameters. The final objective 
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function values indicated that solution (a) with function value of 6.8x103 (iteration 5000 and 
number of gains before stop 200) is better than solution (b) with function value 6.1x103

(iteration 1000, number of gains before stop 100). The solutions were obtained in 6 seconds 
and 2 seconds respectively. Hence it is possible to obtain faster solutions in real time by 
dynamically tuning the GA parameters based on required function value or number of 
iterations, and also using a faster computer for running the algorithm. It is however not 
clear how the function value varies with different shapes and parameter values. In future, 
we hope to study how to adjust the GA parameters dynamically to obtain the fastest 
solutions in real time.   

(a) (b) 

Figure 9. (a-b) Finger points for the same object for different functional values 

7. Conclusion 

The main contributions of this research are an effective vision based method to compute the 
optimal grasp points for a 2D prismatic object using GA has been proposed. The simulation 
and experimental results prove that it is possible to apply the algorithm in practical cases to 
find the optimal grasp points. In future we hope to integrate the method in a multifinger 
robotic hand to grasp different types of deforming objects autonomously.  
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1. Introduction    

Multi-focal vision provides two or more vision devices with different fields of view and 
measurement accuracies. A main advantage of this concept is a flexible allocation of these 
sensor resources accounting for the current situational and task performance requirements. 
Particularly, vision devices with large fields of view and low accuracies can be used 
together. Thereby, a coarse overview of the scene is provided, e.g. in order to be able to 
perceive activities or structures of potential interest in the local surroundings. Selected 
smaller regions can be observed with high-accuracy vision devices in order to improve task 
performance, e.g. localization accuracy, or examine objects of interest. Potential target 
systems and applications cover the whole range of machine vision from visual perception 
over active vision and vision-based control to higher-level attention functions.  
This chapter is concerned with multi-focal vision on the vision-based feedback control level. 
Novel vision-based control concepts for multi-focal active vision systems are presented. Of 
particular interest is the performance of multi-focal approaches in contrast to conventional 
approaches which is assessed in comparative studies on selected problems.  
In vision-based feedback control of the active vision system pose, several options to make 
use of the individual vision devices of a multi-focal system exist: a) only one of the vision 
devices is used at a time by switching between the vision devices, b) two or more vision 
devices are used at the same time, or c) the latter option is combined with individual 
switching of one or several of the devices. Major benefit of these strategies is an 
improvement of the control quality, e.g. tracking performance, in contrast to conventional 
methods. A particular advantage of the switching strategies is the possible avoidance of 
singular configurations due to field of view limitations and an instantaneous improvement 
of measurement sensitivity which is beneficial near singular configurations of the visual 
controller and for increasing distances to observed objects. Another advantage is the 
possibility to dynamically switch to a different vision device, e.g. in case of sensor 
breakdown or if the one currently active is to be used otherwise.   
The chapter is organized as follows: In Section 2 the general configuration, application areas, 
data fusion approaches, and measurement performance of multi-focal vision systems are 
discussed; the focus of Section 3 are vision-based strategies to control the pose of multi-focal 
active vision systems and comparative evaluation studies assessing their performance in 
contrast to conventional approaches; conclusions are given in Section 4. 
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Figure 1. Schematical structure of a general multi-focal vision system consisting of several 
vision devices with different focal-lengths; projections of a Cartesian motion vector into the 
image planes of the individual vision devices 

2. Multi-Focal Vision 

2.1 General Vision System Structure 

A multi-focal vision system comprises several vision devices with different fields of view 
and measurement accuracies. The field of view and accuracy of an individual vision device 
is mainly determined by the focal-length of the optics in good approximation and by the 
size and quantization (pixel sizes) of the sensor-chip. Neglecting the gathered quantity of 
light, choosing a finer quantization has approximately the same effect as choosing a larger 
focal-length. Therefore, sensor quantization is considered fixed and equal for all vision 
devices in this chapter. The projections of an environment point or motion vector on the 
image planes of the individual vision devices are scaled differently depending on the 
respective focal-lengths. Figure 1 schematically shows a general multi-focal vision system 
configuration and the projections of a motion vector.  

2.2 Systems and Applications 

Cameras consisting of a CCD- or CMOS-sensor and lens or mirror optics are the most 
common vision devices used in multi-focal vision. Typical embodiments of multi-focal 
vision systems are foveated (bi-focal) systems of humanoid robots with two different cameras 
combined in each eye which are aligned in parallel, e.g. (Brooks et al., 1999; Ude et al., 2006; 
Vijayakumar et al., 2004). Such systems are the most common types of multi-focal systems. 
Systems for ground vehicles, e.g. (Apostoloff & Zelinsky, 2002; Maurer et al., 1996) are 
another prominent class whereas the works of (Pellkofer & Dickmanns, 2000) covering 
situation-dependent coordination of the individual vision devices are probably the most 
advanced implementations known. An upcoming area are surveillance systems which 
strongly benefit from the combination of large scene overview and selective observation 
with high accuracy, e.g. (Bodor et al., 2004; Davis & Chen, 2003; Elder et al., 2004; Jankovic & 
Naish, 2005; Horaud et al., 2006).  
An embodiment with independent motion control of three vision devices and a total of 6 
degrees-of-freedom (DoF) is the camera head of the humanoid robot LOLA developed at our 
laboratory which is shown in Figure 2, cf. e.g. (Kühnlenz et al., 2006). It provides a flexible 
allocation of these vision devices and, due to directly driven gimbals, very fast camera 
saccades outperforming known systems.  

image plane 

motion vector 
focal-point 

projection ray 

optical axis 
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Most known methods for active vision control in the field of multi-focal vision are 
concerned with decision-based mechanisms to coordinate the view direction of a telephoto 
vision device based on evaluations of visual data of a wide-angle device. For a survey on 
existing methods cf. (Kühnlenz, 2007). 

Figure  2. Multi-focal vision system of humanoid LOLA (Kühnlenz et al., 2006) 

2.3 Fusion of Multi-Focal Visual Data 

Several options exist in order to fuse the multi-resolution data of a multi-focal vision system: 
on pixel level, range-image or 3D representation level, and on higher abstraction levels, e.g. 
using prototypical environment representations. Each of these is covered by known 
literature and a variety of methods are known. However, most works do not explicitly 
account for multi-focal systems. The objective of the first two options is the 3D 
reconstruction of Cartesian structures whereas the third option may also cover higher-level 
information, e.g. photometric attributes, symbolic descriptors, etc. 
The fusion of the visual data of the individual vision devices on pixel level leads to a 
common multiple view or multi-sensor data fusion problem for which a large body of 
literature exists, cf. e.g. (Hartley & Zisserman, 2000; Hall & Llinas, 2001). Common tools in 
this context are, e.g., projective factorization and bundle adjustment as well as multi-focal 
tensor methods (Hartley & Zisserman, 2000). Most methods allow for different sensor 
characteristics to be considered and the contribution of individual sensors can be weighted, 
e.g. accounting for their accuracy by evaluating measurement covariances (Hall & Llinas, 
2001).
In multi-focal vision fusion of range-images requires a representation which covers multiple 
accuracies. Common methods for fusing range-images are surface models based on 
triangular meshes and volumetric models based on voxel data, cf. e.g. (Soucy & Laurendeau, 
1992; Dorai et al., 1998; Sagawa et al., 2001). Fusion on raw range-point level is also 
common, however, suffers from several shortcomings which render such methods less 
suited for multi-focal vision, e.g. not accounting for different measurement accuracies. 
Several steps have to be accounted for: detection of overlapping regions of the images, 
establishment of correspondences in these regions between the images, integration of 
corresponding elements in order to obtain a seamless and nonredundant surface or 
volumetric model, and reconstruction of new patches in the overlapping areas. In order to 
optimally integrate corresponding elements, the different accuracies have to be considered 
(Soucy & Lauredau, 1995), e.g. evaluating measurement covariances (Morooka & 
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Nagahashi, 2006). The measurement performance of multi-focal vision systems has recently 
been investigated by (Kühnlenz, 2007). 

2.4 Measurement Performance of Multi-Focal Vision Systems 

The different focal-lengths of the individual vision devices result in different abilities 
(sensitivities) to resolve Cartesian information. The combination of several vision devices 
with different focal-lengths raises the question on the overall measurement performance of 
the total system. Evaluation studies for single- and multi-camera configurations with equal 
vision device characteristics have been conducted by (Nelson & Khosla, 1993) assessing the 
overall sensitivity of the vision system. Generalizing investigations considering multi-focal 
vision system configurations and first comparative studies have recently been conducted  in 
our laboratory (Kühnlenz, 2007).

Figure 3. Qualitative change of approximated sensitivity ellipsoids of a two-camera system 
observing a Cartesian motion vector as measures to resolve Cartesian motion; a) two wide-
angle cameras and b) a wide-angle and a telephoto camera with increasing stereo-base,        
c) two-camera system with fixed stereo-base and increasing focal-length of upper camera 

The multi-focal image space can be considered composed of several subspaces 
corresponding to the image spaces of the individual vision devices. The sensitivity of the 
multi-focal mapping of Cartesian to image space coordinates can be approximated by an 
ellipsoid. Figure 3a and 3b qualitatively show the resulting sensitivity ellipsoids in Cartesian 
space for a conventional and a multi-focal two-camera system, respectively, with varied 
distances between the cameras. Two main results are pointed out: Increasing the focal-
length of an individual vision device results in larger main axes of the sensitivity ellipsoid 
and, thus, in improved resolvability in Cartesian space. This improvement, however, is 
nonuniform in the individual Cartesian directions resulting in a weaker conditioned 
mapping of the multi-focal system. Another aspect shown in Figure 3c is an additional 
rotation of the ellipsoid with variation of the focal-length of an individual vision device. 
This effect can also be exploited in order to achieve a better sensitivity in a particular 
direction if the camera poses are not variable. 

a) b)

c)

focal-length
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In summary, multi-focal vision provides a better measurement sensitivity and, thus, a 
higher accuracy, but a weaker condition than conventional vision. These findings are 
fundamental aspects to be considered in the design and application of multi-focal active 
vision systems. 

3. Multi-Focal Active Vision Control

3.1 Vision-Based Control Strategies 

Vision-based feedback control, also called visual servoing, refers to the use of visual data 
within a feedback loop in order to control a manipulating device. There is a large body of 
literature which is surveyed in a few comprehensive review articles, e.g. cf. (Chaumette et 
al., 2004; Corke, 1994; Hutchinson et al., 1996; Kragic & Christensen, 2002). Many 
applications are known covering, e.g., basic object tracking tasks, control of industrial 
robots, and guidance of ground and aerial vehicles. 
Most approaches are based on geometrical control strategies using inverse kinematics of 
robot manipulator and vision device. Manipulator dynamics are rarely considered. A 
commanded torque is computed from the control error in image space projected into 
Cartesian space by the image Jacobian and a control gain.  
Several works on visual servoing with more than one vision device allow for the use of 
several vision devices differing in measurement accuracy. These works include for instance 
the consideration of multiple view geometry, e.g. (Hollighurst & Cipolla, 1994; Nelson & 
Khosla, 1995; Cowan, 2002) and eye-in-hand/eye-to-hand cooperation strategies, e.g. 
(Flandin et al., 2000; Lipiello et al., 2005). A more general multi-camera approach is (Malis et 
al., 2000) introducing weighting coefficients of the individual sensors to be tuned according 
to the multiple sensor accuracies. However, no method to determine the coefficients is 
given. Control in invariance regions is known resulting in independence of intrinsic camera 
parameters and allowing for visual servoing over several different vision devices, e.g. 
(Hager, 1995; Malis, 2001). The use of zooming cameras for control is also known, e.g. 
(Hayman, 2000; Hosoda et al., 1995), which, however, cannot provide both, large field of 
view and high measurement accuracy, at the same time. 
Multi-focal approaches to visual servoing have recently been proposed by our laboratory in 
order to overcome common drawbacks of conventional visual servoing (Kühnlenz & Buss, 
2005; Kühnlenz & Buss, 2006; Kühnlenz, 2007). Main shortcomings of conventional 
approaches are dependency of control performance on distance between vision device and 
observed target and limitations of the field of view. This chapter discusses three control 
strategies making use of the individual vision devices of a multi-focal vision system in 
various ways. A switching strategy dynamically selects a particular vision device from a set 
in order to satisfy conditions on control performance and/or field of view, thereby, assuring 
a defined performance over the operating distance range. This sensor switching strategy 
also facilitates visual servoing if a particular vision device has to be used for other tasks or in 
case of sensor breakdown. A second strategy introduces vision devices with high accuracy 
observing selected partial target regions in addition to wide-angle devices observing the 
remaining scene. The advantages of both sensor types are combined: increase of sensitivity 
resulting in improved control performance and the observation of sufficient features in 
order to avoid singularities of the visual controller. A third strategy combines both strategies 
allowing independent switches of individual vision devices simultaneously observing the 
scene. These strategies are presented in the following sections. 
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3.2 Sensor Switching Control Strategy 

A multi-focal active vision system provides two or more vision devices with different 
measurement accuracies and fields of view. Each of these vision devices can be used in a 
feedback control loop in order to control the pose of the active vision system evaluating 
visual information. A possible strategy is to switch between these vision devices accounting 
for requirements on control performance and field of view or other situation-dependent 
conditions. This strategy is discussed in the current section.  

Figure 4. Visual servoing scenario with multi-focal active vision system consisting of a wide-
angle camera (h1) and a telephoto camera (h2); two vision system poses with switch of active 
vision device 

The proposed sensor switching control strategy is visualized in Figure 5. Assumed is a 
physical vision device mapping observed feature points concatenated in vector r to an 
image space vector ξ

))(,( qxrh=ξ , (1) 

at some Cartesian sensor pose x relative to the observed feature points which is dependent 
on the joint angle configuration q of the active vision device. Consider further a velocity 
relationship between image space coordinates ξ and joint space coordinates q

qqqJq )),(()( ξξ = , (2) 

with differential kinematics J=JvRJg corresponding to a particular combination of vision 
device and manipulator, visual Jacobian Jv, matrix R=diag(Rc,…,Rc) with rotation matrix Rc

of camera frame with respect to robot frame, and the geometric Jacobian of the manipulator 
Jg, cf. (Kelly et al., 2000). A common approach to control the pose of an active vision system 
evaluating visual information is a basic resolved rate controller computing joint torques 
from a control error ξd-ξ(t) in image space in combination with a joint-level controller 

gqKKJ v
d

p +−−= + )( ξξτ , (3) 

with positive semi-definite control gain matrices Kp and Kv, a desired feature point 
configuration ξd, joint angles q, gravitational torques g, and joint torques τ. The computed 
torques are fed into the dynamics of the active vision system which can be written 

τ=++ )(),()( qgqqqCqqM , (4) 

with the inertia matrix M and C summarizing Coriolis and friction forces, gravitational 
torques g, joint angles q, and joint torques τ.

h1

h2
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Now consider a set of n vision devices H={h1,h2,…,hn} mounted on the same manipulator 
and the corresponding set of differential kinematics J={J1,J2,…,Jn}. An active vision controller 
is proposed which substitutes the conventional visual controller by a switching controller  

gqKKJ v
d

p +−−= +
)( ξξτ η , (5) 

with a switched tuple of vision device hη and corresponding differential kinematics Jη

>∈∈< HJ ηη hJ , , },...2,1{ n∈η , (6) 

selected from the sets J and H.

Figure 5. Block diagram of multi-focal switching visual servoing strategy; vision devices are 
switched directly or by conditions on field of view and/or control performance 

This switching control strategy has been shown locally asymptotically stable by proving the 
existence of a common Lyapunov function under the assumption that no parameter 
perturbations exist (Kühnlenz, 2007). In case of parameter perturbations, e.g. focal-lengths 
or control gains are not known exactly, stability can be assured by, e.g., invoking multiple 
Lyapunov functions and the dwell-time approach (Kühnlenz, 2007).  
A major benefit of the proposed control strategy is the possibility to dynamically switch 
between several vision devices if the control performance decreases. This is, e.g., the case at 
or near singular configurations of the visual controller. Most important cases are the 
exceedance of the image plane limits by observed feature points and large distances 
between vision device and observed environmental structure. In these cases a vision device 
with a larger field of view or a larger focal-length, respectively, can be selected. 
Main conditions for switching of vision devices and visual controller may consider 
requirements on control performance and field of view. A straight forward formulation 
dynamically selects the vision device with the highest necessary sensitivity in order to 
provide a sufficient control performance, e.g. evaluating the pose error variance, in the 
current situation. As a side-condition field of view requirements can be considered, e.g. 
always selecting the vision device providing sufficient control performance with maximum 
field of view. Alternatively, if no measurements of the vision device pose are available the 
sensitivity or condition of the visual controller can be evaluated. A discussion of selected 
switching conditions is given in (Kühnlenz, 2007).  
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3.3 Comparative Evaluation Study of Sensor Switching Control Strategy 

The impact of the proposed switching visual servoing strategy on control performance is 
evaluated in simulations using a standard trajectory following task along the optical axis. 
The manipulator dynamics are modeled as a simple decoupled mass-damper-system. 
Manipulator geometry is neglected. Joint and Cartesian spaces are, thus, equivalent. The 
manipulator inertia matrix is M=0.05diag(1kg, 1kg, 1kg, 1kgm2, 1kgm2, 1kgm2) and matrices 
Kv+C=0.2diag(1kgs-1, 1kgs-1, 1kgs-1, 1kgms-1, 1kgms-1, 1kgms-1). The control gain Kp is set 
such that the system settles in 2s for a static ξd. A set of three sensors with different focal-
lengths of H={10mm, 20mm, 40mm} and a set of corresponding differential kinematics 
J={J1, J2, J3} based on the visual Jacobian are defined. The vision devices are assumed 
coincident. A feedback quantization of 0.00001m and a sensor noise power of 0.000012m2 are 
assumed. A square object is observed with edge lengths of 0.5m at an initial distance of 1m 
from the vision system. The desired trajectory is 

T
d tttx −−=

5

1
00

2

7

25

1
sin

2

7
00)(

π , (7) 

with a sinusoidal translation along the optical axes and a uniform rotation around the 
optical axes. The corresponding desired feature point vector ξd is computed using a pinhole 
camera model. 
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Figure 6. Tracking errors epose,i and trajectory xpose,i of visual servoing trajectory following 
task; sinusoidal translation along optical (xz-)axis with uniform rotation (xφ,z) ; focal-lengths 
a) 10mm, b) 20mm, c) 40mm 

For comparison the task is performed with each of the vision devices independently and 
afterwards utilizing the proposed switching strategy. A switching condition is defined with 
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a pose error variance band of σ2=6.25 10-6m2 and a side-condition to provide a maximum 
field of view. Thus, whenever this variance band is exceeded the next vision device 
providing the maximum possible field of view is selected. 

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

t [s]

σ e
,z

 [
m

]

λ=10mm
λ=20mm

λ=40mm

Figure 7. Corresponding tracking error standard deviation estimates for trajectory following 
tasks (Figure 6) with different cameras; three samples estimation window 
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Figure 8. Results of sensor switching visual servoing strategy with multi-focal vision; 
sinusoidal translation along optical (xz-)axis with uniform rotation (xφ,z); a) tracking errors, 
b) tracking error standard deviation estimates, c) current focal-length, d) pose trajectory 

Figure 6 shows the resulting tracking errors for the trajectory following task for each of the 
individual vision devices. In spite of very low control error variances in image space of 
about 0.01 pixels2 large pose error variances in Cartesian space can be noted which vary 
over the whole operating distance as shown in Figure 7. The distance dependent sensitivity 
of the visual controller and quantization effects result in varying pose error variances over 
the operating range caused by sensor noise. These effects remain a particular problem for 
wide range visual servoing rendering conventional visual servoing strategies unsuitable. 
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Figure 8 shows the results of the switching control strategy. The standard deviation (Figure 
8b) is kept within a small band reaching from about 0.004m to 0.008m. The overall 
variability is significantly lower compared to the single-camera tasks (Figure 7). The spikes, 
which can be noted in the standard deviation diagram, are caused by the switches due to the 
delay of the feedback signal. After a switch the desired feature value changes with the 
sensor, but the current value is still taken from the previous sensor. Thus, the control error 
at this time instance jumps. This effect can be reduced by mapping the previous value of the 
feature vector to the image space of the new sensor or by definition of a narrower variance 
band as switching condition. 
Figure 9 exemplarily illustrates the progression of the fields of view over time for a uniform 
single-camera translation task and the corresponding camera switching task. The field of 
view is defined by the visible part of the plane extending the surface of the observed object 
in x-direction. The variability achieved with the switching strategy is significantly lower. 
The effectiveness of the proposed multi-focal switching strategy has been shown 
successfully. The contributions of this novel approach are a guaranteed control performance 
by means of a bounded pose error variance, a low variability of the performance over the 
whole operating range, and the consideration of situational side-conditions as, e.g., a 
maximum field of view. 

3.4 Multi-Camera Control Strategy 

If two or more vision devices of a multi-focal system are available simultaneously these 
devices can be used together in order to control the pose of the vision system. In this section 
a multi-focal multi-camera strategy is proposed in order to make use of several available 
vision devices with different fields of view and measurement accuracies. Major benefit is an 
improved control performance compared to single-camera strategies whereas only a partial 
observation of the reference object with high accuracy is necessary. 
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the observing vision device; uniform translation along optical (xz-)axis; a) single-camera 
tasks, b) sensor switching strategy with multi-focal vision, c) pose trajectory 
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A vision-based controller computing joint torques from a control error in image space 
requires sufficient observed feature points to be mapped to the six Cartesian degrees of 
freedom. A minimum of three feature points composed of two elements in image space is 
needed in order to render the controller full rank. If the field of view of the observing vision 
device is too small to cover all feature points the controller becomes singular. However, 
high-sensitivity sensors needed in order to achieve high control performance only provide 
small fields of view.  
A multi-camera strategy is proposed combining the advantages of vision devices with 
different characteristics. High-sensitivity devices are used for improving control 
performance and wide-field-of-view devices in order to observe the required number of 
remaining feature points to render the controller full rank. 

Figure 10. Visual servoing scenario with multi-focal active vision system consisting of a 
wide-angle camera (h1) and a telephoto camera (h2); both vision devices are observing 
different feature points of a reference object accounting for field of view constraints 

The sensor equation (1) extends such that individual feature points are observed with 
different vision sensors 

[ ] [ ]( ) [ ]( )[ ]TTT
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where a Cartesian point rk is mapped to an image point ξl by vision device hm. The proposed 
visual controller is given by 

[ ] gqKKJJJ v
d

p

TTTT +−−=
+

)(211 ξξτ , (9) 

with image feature vector ξ=[ ξ1 ... ξi ξj ...]T and differential kinematics Jm corresponding to 
vision device hm.
Substituting the composition of individual differential kinematics Jm by a generalized 
differential kinematics J* the proposed control strategy can be expressed by 

gqKKJ v
d

p +−−= +
)(* ξξτ , (10) 

which has been proven locally asymptotically stable (Kelly et al., 2000). 
Utilizing the proposed multi-camera strategy an improved control performance is achieved 
even though only parts of the observed reference structure are visible for the high-
sensitivity vision devices. This multi-camera strategy can be combined with the switching 

h1
h2
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strategy discussed in Section 3.2 allowing switches of the individual vision devices of a 
multi-focal vision system. Such a multi-camera switching strategy is discussed in the 
following section. 

3.5 Multi-Camera Switching Control Strategy 

In the previous sections two concepts to make use of the individual vision devices of a 
multi-focal vision system have been presented: a sensor switching and a multi-camera 
vision-based control strategy. This section proposes the integration of both strategies, thus, 
allowing switches of one or more vision devices observing parts of a reference structure 
simultaneously. Thereby, the benefits of both strategies are combined. 
The sensor equation (8) is extended writing 

[ ] [ ]( ) [ ]( )[ ]TTT
j

TT
i

TTT
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T qxrhqxrrh )(,)(, 221111

ηηξξξ = , (11) 

allowing the hm
η of (8) to be selected dynamically from a set H={h1,h2,…,hn}. The visual 

controllers (5) and (10) are integrated writing 

gqKKJ v
d

p +−−= + )(* ξξτ η , (12) 

where Jη∗  is composed of individual differential kinematics Jm

[ ]TTTT
JJJJ ηηηη

211

* =+ , (13) 

which are selected dynamically from a set J={J1,J2,…,Jn} of differential kinematics 
corresponding to the set H of available vision devices.  
 In the following section the proposed multi-camera strategies are exemplarily evaluated in a 
standard visual servoing scenario. 

3.6 Comparative Evaluation Study of Multi-Camera Control Strategies 

In this section a comparative evaluation study is conducted in order to demonstrate the 
benefits of the proposed multi-camera and multi-camera switching strategies. Considered is 
again a trajectory following task with a uniform translation along the optical axis of a main  
camera with a wide field of view (focal-length 5mm) as shown in Figure 10. A square 
reference object is observed initially located at a distance of 1m to the camera. A second 
camera observes only one feature point of the object. The characteristics of this camera are 
switchable. Either the same characteristics as of the wide-angle camera or telephoto 
characteristics (focal-length 40mm) are selectable. The inertia matrix is set to M=0.5diag(1kg, 
1kg, 1kg, 1kgm2, 1kgm2, 1kgm2) and matrices Kv+C=200diag(1kgs-1, 1kgs-1, 1kgs-1, 1kgms-1,
1kgms-1, 1kgms-1). The other simulation parameters are set equal to section 3.3.  
Three simulation scenarios are compared: second camera with wide-angle characteristics, 
with telephoto characteristics, and switchable. Switches of the second camera are allowed 
after a time of 2s when a constant tracking error is achieved. A switch is performed when 
the tracking error standard deviation exceeds a threshold of 0.00004m. 
Figure 11 shows the tracking error of the uniform trajectory following task with switched 
second camera which can be considered constant after about 2s. Figure 12 shows the 
resulting standard deviations of the tracking error for all three tasks. It can be noted that a 
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lower standard deviation is achieved by the multi-camera task (second camera with 
telephoto characteristics) compared to the wide-angle task. The multi-camera switching task 
additionally achieves a lower variability of the standard deviation of the tracking error.  
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Figure 11. Tracking error of multi-focal two-camera visual servoing task with wide-angle 
and switchable wide-angle/telephoto camera; desired trajectory xzd(t)=-0.2ms-1t-1m
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(wide-angle), of unswitched multi-focal multi-camera task with one feature point observed 
by additional telephoto camera, and of switched multi-focal multi-camera task with 
additional camera switching from wide-angle to telephoto characteristics at t=2.6s 
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Figure 13. Sensitivities of the visual servoing controller along the optical axis of the central 
wide-angle camera corresponding to the tasks in Figure 12 
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Figure 13 shows the sensitivity (szvz) of the visual controller for all three tasks along the 
optical axis of the wide-angle camera. It can be noted that the multi-camera strategies result 
in a better sensitivity of the controller compared to the wide-angle task. 
Summarized, the simulations clearly show the benefits of the proposed multi-camera control 
strategies for multi-focal vision systems: an exploitation of the field of view and sensitivity 
characteristics in order to achieve improved control performance and a lower variability of 
the performance by switching of individual vision devices. 

4. Conclusion 

In this chapter novel visual servoing strategies have been proposed based on multi-focal 
active vision systems able to overcome common drawbacks of conventional approaches: a 
tradeoff between field of view and sensitivity of vision devices and a large variability of the 
control performance due to distance dependency and singular configurations of the visual 
controller. Several control approaches to exploit the benefits of multi-focal vision have been 
proposed and evaluated in simulations: Serial switching between vision devices with 
different characteristics based on performance- and field-of-view-dependent switching 
conditions, usage of several of these vision devices at the same time observing different 
parts of a reference structure, and individual switching of one or more of these 
simultaneously used sensors. Stability has been discussed utilizing common and multiple 
Lyapunov functions. 
It has been shown that each of the proposed strategies significantly improves the visual 
servoing performance by reduction of the pose error variance.  Depending on the 
application scenario several guidelines for using multi-focal vision can be given. If only one 
vision sensor at a time is selectable then a dynamical sensor selection satisfying desired 
performance constraints and side-conditions is proposed. If several vision sensors can be 
used simultaneously selected features of a reference object can be observed with high-
sensitivity sensors while a large field of view sensor ensures observation of a sufficient 
number of features in order to render the visual controller full rank. The high-sensitivity 
sensors should preferably be focused on those feature points resulting in the highest 
sensitivity of the controller. 
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1. Introduction 

This paper discusses some issues for generating point of contact using visual features. To 
address these issues, the paper is divided into two sections: visual features extraction and 
grasp planning. In order to provide a suitable description of object contour, a method for 
grouping visual features is proposed. A very important aspect of this method is the way 
knowledge about grasping regions are represented in the extraction process, which is used 
also as filtering process to exclude all undesirable grasping point (unstable points) and all line 
segments that do not fit to the fingertip position. Fingertips are modelled as point contact with 
friction using the theory of polyhedral convex cones. Our approach uses three-finger contact 
for grasping planar objects. Each set of three candidate of grasping points is formu- lated as 
linear constraints and solved using linear programming solvers. Finally, we briefly describe 
some experiments on a humanoid robot with a stereo camera head and an anthropomorphic 
robot hand within the ”Centre of excellence on Humanoid Robots: Learning and co-operating 
Systems” at the University of Karlsruhe and Forchungszentrum Karlsruhe. 

2. Related work 

Grasping by multi-fingered robot hands has been an active research area in the last years. 
Several important studies including grasp planning, manipulation and stability analysis 
have been done. Most of these researches assume that the geometry of the object to be 
grasped is known, the fingertip touches the object in a point contact without rolling, and the 
position of the contact points are estimated based on the geometrical constraints of the 2 
Madjid Boudaba, Alicia Casals and Heinz Woern grasping system. These assumptions 
reduce the complexity of the mathematical model of the grasp (see [Park and Starr, 1992], 
[Ferrari and Canny, 1992], [Ponce and Faverjon, 1995], [Bicchi and Kumar, 2000], [J. W. Li 
and Liu, 2003]). A few work, however has been done in integrating vision-sensors for 
grasping and manipulation tasks. To place our approach in perspective, we review existence 
methods for sensor based grasp planning. The existing literature can be broadly classified in 
two categories; vision based and tactile based. For both categories, the extracted image 
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features are of concern which are vary from geometric primitives such as edges, lines, 
vertices, and circles to optical flow estimates. The first category uses visual features to 
estimate the robot’s motion with respect to the object pose [Maekawa et al., 1995], [Smith 
and Papanikolopoulos, 1996], [Allen et al., 1999]. Once the robot hands is already aligned 
with object, then it needs only to know where the fingers are placed on the object. The 
second category of sensor uses tactile features to estimate the touch sensing area that in 
contact with the object [Berger and Khosla, 1991], [Chen et al., 1995], [Lee and Nicholls, 
1999].  A practical drawback is that the grasp execution is hardly reactive to sensing errors 
such as finger positioning errors. A vision sensor, meanwhile, is unable to handle 
occlusions. Since an object is grasped according to its CAD model [Koller et al., 1993], 
[Wunsch et al., 1997], [Sanz et al., 1998], [N. Giordana and Spindler, 2000], [Kragic et al., 
2001], an image also contains redundant information that could become a source of errors 
and ineffciency in the processing. 
This paper is an extension of our previous works [Boudaba and Casals, 2005], [Boudaba et 
al., 2005], and [Boudaba and Casals, 2006] on grasp planning using visual features. In this 
work, we demonstrate its utility in the context of grasp (or fingers) positioning. Consider the 
problem of selecting and executing a grasp. In most tasks, one can expect various 
uncertainties. To grasp an object implies building a relationship between the robot hand and 
object model. The latter is often unavailable or poorly known. So selecting a grasp position 
from such model can be unprecise or unpracticable in real time applications. In our 
approach, we avoid to use any object model and instead it works directly from image 
features. In order to avoid fingers positioning error, a set of grasping regions is defined that 
represents the features of grasping contact point. This not only avoids detection/localization 
errors but also saves computations that could affect the reliability of the system. Our 
approach can play the critical role of forcing the fingers to a desired positions before the task 
of grasping is executed. 
The proposed work can be highlighted in two major phases: 
1. Visual information phase: In this phase, a set of visual features such as object size, center 

of mass, main axis for orientation, and object’s boundary are extracted. For the purpose of 
grasping region determination, extracting straight segments are of concern using the 
basic results from contour based shape representation techniques. We will focus on the 
class techniques that attempt to represent object’s contour into a model graph, which 
preserves the topological relationships between features. 

2. Grasp planning phase: The grasping points are generated in the planning task taking as 
input these visual features extracted from the first phase. So a relationship between 
visual features and grasp planning is proposed. Then a set of geometrical functions is 
analysed to find a feasible solution for grasping. The result of grasp planning is a 
database contains a list of: 
• Valid grasps. all grasps that fulfill the condition of grasp. 
• Best Grasps. a criterion for measuring a grasp quality is used to evaluate the best 

grasps from a list of valid grasps. 
• Reject grasps. those grasps that do not fulfill the condition of grasp. 

The remainder of this chapter is organized as follows: Section 3 gives some background for 
grasping in this direction. The friction cone modeling and condition of force-closure grasps 
are discussed. In section 4, a vision system framework is presented. The vision system is 
divided into two parts: the first part concerning to 2D grasping and the second part 
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concerning 3D grasping. we first discuss the extracted visual information we have 
integrated in grasp planning, generation of grasping regions by using curves fitting and 
merging techniques, and discuss the method of selecting valid grasps using the condition of 
force-closure grasp. We then discuss the algorithm for computing feasible solutions for 
grasping in section 5. We verify our algorithm by presenting experimental results of 2D 
object grasping with three-fingers. Finally, we discuss the result of our approach, and future 
work in section 6.

3. Grasp Background 

Our discussion is based on [Hirai, 2002]. Given a grasp which is characterized by a set of 
contact points and the associated contact models, determine if the grasp has a force-closure. 
For point contact, a commonly used model is point contact with friction (PCWF). In this 
model, fingers can exert any force pointing into friction cone at the edge of contacts (We use 
edge contact instead of point contact and can be described as the convex sum of proper 
point contacts). To fully analyze the grasp feasibility, we need to examine the full space of 
forces acting on the object. Forming the convex hull of this space is diffcult due to the 
nonlinear friction cone constraints imposed by the contact models. In this section, we only 
focus in precision grasps, where only the fingertips are in contact with the object. After 
discussing the friction cone modeling, a formalizme is used for analysing the force closure 
grasps using the theory of polyhedral convex cones. 

3.1 Modeling the Point of Contact 

A point of contact with friction (sometimes referred to as a hard-finger) im- poses non linear 
constraints on the force inside of its friction cones. For the analysis of the contact forces in 
planar grasps, we simplify the problem by modeling the friction cones as a convex 
polytopes using the theory of polyhedral convex cones attributed to [Goldman and Tucker, 
1956]. In order to construct the convex polytope from the primitive contact forces, the 
following theorem states that a polyhedral convex cone (PCC) can be generated by a set of 
basic directional vectors. 

(a)                                       (b) 
Figure 1. Point Contact Modelling 

Theorem 1. A convex cone is a polyhedral if and only if it is finitely generated, that is, the 
cone is generated by a finite number of vectors :

(1)
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where the coeffcients i are all non negative. Since vectors ui through um span the cone, we 
write 1 simply by C=span {u1, u2, ..., um}. The cone spanned by a set of vectors is the set of all 
nonnegative linear combinations of its vectors. A proof of this theorem can be found in 
[Goldman and Tucker, 1956]. 
Given a polyhedral convex set C, let vert(P)={u1, u2, ..., um} stand for vertices of a polytope P,
while face(P)={F1, ..., FM} denotes its faces. In the plane, a cone has the appearance as shown 
in Figure 1(b). This means that we can reduce the number of cone sides, m = 6 to one face, Ci.
Let’s denote by P, the convex polytopes of a modelled cone, and {u1, u2, u3} its three vertices. 
We can define such polytope as 

(2)

where ui denotes the i-th vertex of P, and up is the total number of vertices. 
n=2 in the case of a 2D plane. 

3.2 Force-Closure Grasps 

The force-closure of a grasp is evaluated by analysing its convex cone. For a set of friction 
cone intersection, the full space can be defined by 

(3)

where k is the number of grasping contacts. Note that the result of  is a set of polytopes 
intersections and produces either an empty set or a bounded convex polytopes. Therefore, 
the solution of (3) can be expressed in terms of its extreme vertices 

(4)

where p is the total number of extreme vertices. 

(a)                                                                   (b) 
Figure 2. Feasible solution of a three-fingered grasp 

Figure 2 illustrates an example of feasible solution of  and its grasp space represented 
by its extreme vertices P = { }. From this figure, two observations can be 
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suggested: first, if the location of a fingertip is not a solution to the grasp, it is possible to move 
along its grasping region. Such displacement is defined by ui = ui0 + iti where i is constrained 
by 0 i li and ui be a pointed vertex of Ci. Second, we define a ray passing through the 
pointed vertex ui, by a function . The vector ci=[ cix, ciy] R2 varies from the 
lower to the upper side of the spanned cone Ci. This allows us to check whether the feasible 
solution remains for all vci in the cone spanned by u2 and u3 (see Figure 1(b)).
Testing the force-closure of a grasp now becomes the problem of finding the solutions to (4). 
In other words, finding the parameters of (3) that the (4) is a bounded convex polytopes. 

4. System Description 

We are currently developing a robotic system that can operate autonomously in an 
unknown environment. In this case, the main objective is the capability of the system to (1) 
locate and measure objects, (2) plan its own actions, and (3) self adaptable grasping 
execution. The architecture of the whole system is organized into several modules, which 
are embedded in a distributed object communication framework. There are mainly three 
modules which are concerned in this development: the extraction of visual information and 
its interpretation, grasp planning using the robot hand, the control and execution of grasps.. 

(a) Experimental setup  (b) Stereo vision head 
Figure 3. Robotic system framework. (a) An humanoid robot arm (7DOF) and an 
antropomorphic robot hand (10DOF). (b) Stereo vision system 

4.1 The Robot Hand 

The prototype of the anthropomorphic robot hands (see [Schulz et al. 2001]) has a 7 degrees 
of freedom (DOF) arm (see Fig. 3(a)). This first prototype is currently driven pneumatically 
and is able to control the 10 DOF separately, but the joints can only be fully opened or 
closed. The robot's task involve controlling the hand for collision-free grasping and 
manipulation of objects in the three dimensional space. The system is guided solely by 
visual information extracted by the vision system.   
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4.2 The Vision System 

The vision system shown in Fig. 3(b) consists of a stereo camera (MEGA-D from Videre 
Design) mounted on pan-tilt heads equipped with a pair of 4.8 mm lenses and has a fixed 
baseline of about 9 cm. The pan-tilt head provides two additional degrees of freedom for the 
cameras, both of them rotational.  The MEGA-D stereo head uses a IEEE 1394 firewire 
interface to connect to a workstation and has a SRI's Small Vision System (SVS) software for 
calibration and stereo correlation (see [Konolige, 1997]). 
For its complexity, the flow diagram of visual information has been divided into two parts. 
The first part provides details of 2D visual features extraction. The second part is dedicated 
to 3D visual features retrieval. The image acquisition primarily aims at the conversion of 
visual information to electrical signals, suitable for computer interfacing. Then, the incoming 
image is subjected to processing having in mind two purposes: (1) removal of image noise 
via low-pass filtering by using Gaussian filters due to its computational simplicity and (2) 
extraction of prominent edges via high-pass filtering by using the Sobel operator. This 
information is finally used to group pixels into lines, or any other edge primitive (circles, 
contours, etc). This is the basis of the extensively used Canny's algorithm [Canny, 1986]. So, 
the basic step is to identify the main pixels that may preserve the object shape. As we are 
visually determining grasping points, the following sections provide some details of what 
we need for our approach. 
Contour Based Shape Representation 
Due to their semantically rich nature, contours are one of the most commonly used shape 
descriptors, and various methods for representing the contours of 2D objects have been 
proposed in the literature [Costa and Cesar, 2001]. Extracting meaningful features from 
digital curves, finding lines or segments in an image is highly significant in grasping 
application. Most of the available methods are variations of the dominant point detection 
algorithms [M. Marji, 2003]. The advantage of using dominant points is that both, high data 
compression and feature extraction can be achieve. Other works prefer the method of 
polygonal approximation using linking and merging algorithms [Rosin, 1997] and curvature 
scale space (CSS) [Mokhtarian and Mackworth, 1986]. 
A function regrouping parameters of visual features together can be defined by 

 (5) 

where  is a list of consecutive contour’s vertices with =(xi, yi) that 
represents the location of  relative to the center of mass of the object, com=(xc, yc). slist={s1,
s2, · · · , sm} is a list of consecutive contour’s segments. Both lists  and slist are labelled 
counter-clockwise (ccw) order about the center of mass. During the processing, the 
boundary of the object, B is maintained as a doubly linked list of vertices and intervening 
segments as . The first segment s1, connecting vertices 1 and 2, the last 
segment sm, connecting vertices m and 1. A vertex i is called reflex if the internal angle at 

i is greater than 180 degrees, and convex otherwise. llist is a list that contains the 
parameters of correspondent segments. Additional to the local features determined above, 
an algorithm for contour following is integrated. This algorithm follows the object’s 
boundary from a starting point determined previously and goes counter-clockwise around 
the contour by ordering successively its vertices/edge points into a double linked list. The 
algorithm stops when the starting point is reached for the second time. The aim of this stage 
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is to determine that all vertices/segments belong to the object’s boundary which we will 
need further for the determination of the grasping points position. 

(a) (b) 
(a) Binary object 

(a) (b) 
(b) Visual features extraction 

Figure 4. Object shape representation. (a) Images from original industrial objects 
(b) Extraction of grasping regions 
Extraction of Grasping Regions 
Grasping regions are determined by grouping consecutive edge points from a binary edge 
image. This is usually a preliminary step before grasping takes place, and may not be as 
time critical as the task of grasping points determination. We deal with (5), the list 

 is the result that forms an ordered list of connected boundary vertices. 
We then need to store the parameters of these primitives instead of discrete points (or 
vertices) to fit a line segment to a set of vertices points that lie along a line segment. The aim 
of this step is to determine all salient segments that preserve the shape of the object contour. 
Figure 4(b) shows grasp regions on the object’s contour. Afterwards, each grasping region is 
extracted as straight segment. The size of the grasping regions should be long enough for 
positioning the robot fingers. The curve fitting (as shown in Figure 5(a)) describes the 
process of finding a minimum set of curve segments to approximate the object’s contour to a 
set of line segments with minimum distortion. Once the line segments have been 
approximated, the merging method (as shown in Figure 5(b)) is used to merge two lines 
segment that satisfied the merging threshold.  
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The final result of the algorithm is a list of consecutive line segments with a specified 
tolerance which preserve the object’s contour. Briefly, merging methods, (1) use the first two 
vertices points to define a line segment (2) add a new vertex if it does not deviate too much 
from the current line segment (3) update the parameters of the line segment using least-
squares measure (4) start a new line segment when edge points deviate too much from the line 
segment. The final result of the algorithm is a list of consecutive line segments with a specified 
tolerance which preserve the object’s contour. We define such list by 

(6)

where a segment si is defined by its ending vertices i=(xi, yi) and i+1=(xi+1, yi+1) that represent 
the location of a segment in the plane. m is the number of segments containing the list slist.

(a) Curve fitting  (b) Segment merging 
Figure 5. Curve fitting and merging methods. In each curve point p, a variable triangle 
(p–,p,p+) is defined. The admissible triangle is then checked by the following conditions: 
dmin p –p– , dmin p – p+ , max, where p –p– = a, p – p+  = b, and  

 = arccos (a2 + b2 – c2)/2ab is the opening angle of the triangle 
Critical Grasping Points 

(a) Critical points (b) Finger displacement 
Figure 6. (a) Critical grasping point. Possible displacement of a fingertip fi on its 
corresponding grasping region (thicker region): Fingertip f1 is placed at midpoint of its 
corresponding grasp region, 1=0. Fingertip f2 is displaced at 2 in positive direction from 
midpoint, and the fingertip f3 is displaced at 3 in negative direction from midpoint. We 
attach a left-handed frame (ni, ti) to each finger position pi with a distance di to the center of 
mass. ni and ti) are normal and tangential direction of a finger fi in the plane 
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To assure the robustness of contact placement, we make some assumptions in (6): First 
assumption, to avoid undesirable contacts at convex vertices and convex corners (see the 
position of finger f1, f2 in Figure 6(a)) which are not generally robust due to small uncertainty 
during the grasping phase. We also avoid the concave vertices having a size of concavity 
smaller than the size of the fingertip using the reachability conditions (see the position of 
finger f3 in Figure 6(a)). 
Second assumption, we estimate a fingertip as a sphere with radius fr (see Figure 6). the 
grasping regions must be large enough for positioning the fingertip on it. Hence, a 
preprocessing (or prefiltering) is necessary in (6) to discard those segments with length less 
than the diameter of the sphere. 
Based on both assumption, we define a small margin value at the endpoint of each segment 
by  as shown in Figure 6 with  =fr. If a segment si contains all possible contact points from 

i to i+1 then any grasping points must satisfy 

(7)

Using the grasp criteria of (7) including the condition that the size of the grasp region must 
be large enough to place a finger on it, gi  2fr (see Figure 6). Equation (6) becomes 

(8)
where glist is a linked list ordered in counterclockwise direction (see Figure 6(b)) and 
updated from the condition of (7). 
Equation (8) is the result of a filtering test which excludes all grasping candidates that do 
not belong to the grasping regions and therefore reducing time consuming during grasp 
point generation. 
Let

(9)

be a function defining the parameter of a grasping region, gi , where pi=(xi,yi) and 
pi+1=(xi+1,yi+1) represent its location in the plane, lgi its length , gci its center (midpoint), 
di is the perpendicular distance from  to the object’s center of mass, com. The 
relationship between the center of mass and grasping region is given in Figure 7(b). The sign 
of the area defines the orientation of grasping region . The elements of (9) verify the 
following equations: 

The last equation gi is a linear equality constraint of a given grasping region in the plane (see 
Figure 7). An additional criteria should be added to avoid that two or three fingers are placed 
on the same contact point. In this paper we only assign one finger to each grasping region. 
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 (a) (b) 
Figure 7. Projection of grasping region gi in the image plane (c, r)

5. Grasp Planning Algorithm 

Grasp planning can be seen as constructing procedures for placing point contacts on the 
surface of a given object to achieve force-closure grasps. Taking as input the set of visual 
features extracted from the contour of the object, the output is a set of valid grasps. The 
relationship between visual features and grasp planning is given in next section. 

5.1 Grasp Point Generation 

Generating a number of valid grasps from a list of candidates and classifying the best 
among them is quite time consuming. Thus a preprocessing (or prefiltering) is necessary 
before the grasping points generation takes place. We first order the (8) in counterclockwise 
direction with a starting point from x-axis as shown in Figure 6(b). Second the initial contact 
of fingertips on grasping regions would be at the midpoint, which are considered as robust 
contacts and measured directly from the center of mass of the object. Then the displacement 

i (see Figure 6(a)) of the fingertip on its corresponding grasping region (if necessary) 
should be first in the counterclockwise then in the clockwise direction. 
The following equation describes the relationship between the visual features and grasp 
planning

(10)

where glist, gparam and com are the visual features observed on the image plane and G is a 
grasp map of outputs defined by the relationship between fingers and the location of contact 
points on its corresponding grasping regions. From the grasp map G three possible solutions 
are derived: 

(11)

where Gs, Gb, and Gr are selected, best, and rejected grasp, respectively. The is, ib, and ir are 
the number of selected, best, and rejected grasps, respectively. 
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For a three-finger grasps, the selected grasps (Gs) is given in the following form: 

A similar form can be given for representing the best grasps Gb  and those rejected Gr.

5.2 The Algorithm 

The algorithm is divided into three parts: Visual features part which are regrouped in (5) 
and (8); grasp planning part which is defined by (10) and (11); and Testing part that 
corresponds to (4). In the visual features part, the compact representation of the object’s 
contour is obtained which includes the grasping regions and local parameters by using the 
standard image processing library. In the grasp planning, a relationship between visual 
features and the location of the contact points is obtained for selecting a valid grasp. In the 
testing part, the force-closure condition is based on determining the feasible solution of a 
grasps. We first model the friction cone as a convex polytopes. Then, we solve the problem 
of (3) and (4) for a given location of contact grasp using programming solvers as well as for 
computing the polytope convex cones, extreme vertices of polytopes, and calculating 
projections. One of the advantages of the proposed algorithm is that it does not require a 
geometrical model of the object and can grasp unknown objects. 

Figure 8. Grasp point generation. The fingertip range defined here is the range of its 
corresponding grasping regions and midpoint is its optimal contact positions, called initial 
pose

The whole algorithm is divided into several procedures and operates as follows: 
1. Visual features procedure 

• Function grouping visual features using (5) 
2. Grasping point generation procedure 

• Pick three grasp regions from (8) 
• Determine the initial position of f1 , f2 and f3

• Compute their friction cones using (2) 
• Compute the friction cones intersection of (3) 
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3. Grasping test procedure 
• Compute the feasible grasps using (4) 
• Check whether the polytopes given by (4) is bounded. If so, stop and save the selected grasps to Gs.
• Else save the rejected grasps to Gr.

4. Quality test procedure 
• The last step of the algorithm consists of selecting the best grasps from a range of valid 

grasps from lower to upper acceptance measures by using the parameters measure given in 
table 1. Save to Gb.

5.3 Implementation 

We have implemented the visual features extraction and grasp planning algorithms in 
Matlab environment for computing feasible solution of a three-fingered grasp. We have 
experimented with two different kind of objects; a 3D object and a planar object. For both 
objects, the images extraction are saved in two jpeg files with a resolution of 320x240 and 
160x220 pixels, respectively. Table 1 resumes the results of grasp planning algorithm. Three 
and four feasible grasp configurations have been selected from a total of 25 and 24 grasping 
regions generated on the object’s boundary obj1 and obj2, respectively. d1, d2 and d3 are 
distance measures of finger position f1, f2 and f3 from the object’s center of mass. x1, x2 are the 
coordinates of the focus point F in the plane. d is the measured distance between focus point 
and center of mass. R is the vector radius of the ball centered at F. The object’s center of 
mass is located at com = 121.00098.000 and com = 115.00075.000, respectively. The angle of 
friction cone is fixed to  = 8.5 degrees for all grasp configurations. Figure 9 illustrates the  
grasp planing for object obj1. Three fingers are in contact with the object which is viewed 
from the top by the stereo vision head placed above the table. For the second object (obj2), 
the visual features are extracted from a single camera. The friction cone modelling and 
linear constraints programming have been implemented using [M. Kvasnica, 2005]. We 
further developed auxiliary function to compute various data such as extraction of visual 
features of the object, extraction of grasping regions, friction cone modelling, and grasp 
configurations. 

6. Conclusions and Future Work 

We have introduced an approach that combines vision and grasping. Based on the vision, 
visually determining grasping points is done by transforming the grasping regions into a 
geometrical optimization problem. The results shown in Figure 6 are obtained from 
applying the software packages in [20] to our Matlab 6.12 programming environment. In 
order to compute the feasible region of various grasps, we have integrated other linear 
programming solvers by providing a set of constraints for optimization procedure. Various 
grasps with three hard-fingers are tested on 2D original object and the feasible solution of 
grasps are determined by analysing the polytope region of grasps. The focus point inside the 
polytope convex and its distance from the object’s center of mass are two measures used for 
selecting the best grasps.The most important aspects of our algorithm are how to select the 
grasping point set and to determine each one step of the grasping process. Three functions, 
pick(), insert(), and remove() are used. The initialization step picks a first grasping set. The 
while loop iterates by checking the feasible region of grasps and then by selecting a new 
candidate of grasp. A build library is used to store valid grasps by the insertion function 
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which inserts a valid candidate grasp into library, while the remove function deletes invalid 
grasp from the library. The results in this paper shows the potential to combine vision and 
grasping in a unified way to resemble the dexterity of human manipulation. 
The second part of our visual processing: General flow diagram will be the future work for 
generating 3D grasps on unknown objects includes implementation on a humanoid robot 
with a stereo camera head and an anthropomorphic robot hand (as shown in Figure 3). 
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Table 1. Parameter measures of three fingered grasp configuration 

 (a) Grasp configuration (GC): 1 (b) Grasp configuration (GC): 2-3 
Figure 9. (a) Grasp planning setup. (b) Result of three fingered grasp configuration 1to3 for 
object obj1
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 (a) Grasp configuration (GC): 1-2 (b) Grasp configuration (GC): 3-4 
Figure 10. (a) Result of three fingered grasp configuration: 1–4 for object obj2
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1. Introduction 

The mission of this chapter is to show the possibility of boosting the performance of the 
vision system of autonomous perception-based robots, by implementing a behavior based 
software architecture with multiple independent sense-think-act loops. This research comes 
forth from a wider view of future robots having layered modular architectures, with higher 
layers controlling lower layers, in which all parts of the robots tasks (perception, behavior, 
motion) are behavior specific, and preferably all input-output mappings are learned. The 
work done in this chapter only focuses on improving the perception of robots. By 
implementing a behavior-based perception system of a goalie in a team of 4-legged soccer 
robots, we have increased its performance on localization and goal-clearing with more than 
50 %. On top, we have significantly increased the performance of the image processing by 
making it entirely object specific, with a different color-table and set of grid-lines for each 
different object searched for. All improvements combined allow the robot to localize in 
various conditions where this was previously not possible.  

2. Layered Modular Architectures 

Soccer playing robots as can be found in the RoboCup (www.robocup.org), are the 
playground to gain experience with embodied intelligence. The software architectures of 
those robots - that can autonomously survive in a niche of the real physical world; with 
limited rules necessary to survive, limited physical circumstances to account for, and simple 
goals to achieve (Pfeifer & Scheier, 1999) - can very well serve as an example for more 
complex industrial machines such as photocopiers, wafer steppers, component placement 
machines, CT and MRI scanners. The architecture of those machines is usually built around 
a single “Sense-Think-Act” loop to allow the machine to perform its task in a physical 
world. It is quite common that several scientific / technical disciplines, each with its own 
expertise, cooperate in the design. As a consequence, the most obvious basic architecture is 
the one as presented in Figure 1, in which for instance an image processing group solves the 
sense task, the control theory group solves the act task, and an AI group solves the think 
task. Software engineers and mechanical engineers take the responsibility over the overall 
software and mechanical hardware design and maintainability, respectively. 
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Figure 1.  Architecture based on scientific / technical disciplines 

Usually after an initial limited architecture phase, the interfaces are quickly established and 
all groups retract to their own lab to locally optimize their part of the problem, thereby often 
making assumptions what is c.q. should be done by the other group. In the end, the data is 
“thrown over the wall” to the other groups, who have to cope with it. As those embedded 
machines increase in complexity over the years, as well as the demands from the world they 
operate in, the software and hardware complexity grows, and all groups start to make their 
sub-system versatile, robust and optimal, and hence increasingly complex for the others to 
use.  

Figure 2.  Layered architecture of Sense-Think-Act modules 

From 1991 onward it was suggested (Brooks, 1991); (Arkin, 1998); (Parker, 1996) that a 
different architectural concept should be followed in the sense that a layered modular 
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architecture should be set-up in which higher layers control the lower layers, either by 
invocation actions from the lower layers or by promoting or suppressing behaviors from 
that lower layers. All modules run principally in parallel and on their turn invoke, promote 
or suppress actions of modules lower in the abstraction hierarchy. 
Figure 2 shows the design for a soccer robot, detailed for its role of striker. Figures 3 and 4 
show the same hierarchy of figure 2, but now in more detail. Moreover, Figure 3 shows 
more detail on the behavior (act) part of the hierarchy, whereas Figure 4 shows more detail 
on the perception (sense) part of the hierarchy. 

Figure 3.  Soccer playing robot in the role of striker; behavior viewpoint 

A striker can either dribble or shoot the ball to goal. The striker module decides on the best 
position (P1...P7) near the goal to dribble the ball to, from where it can successfully execute 
(X) a shoot to goal. Both for dribbling and shooting it needs to go to the best position behind 
the ball. For dribbling to goal it needs to push the ball without loosing it (avoiding others); 
for shooting to goal it needs to execute a kick.  
To perform these three behaviors it needs to perceive the pose (position and orientation) of 
ball and goal with respect to itself, i.e. given by vectors (R, Ø) and to set and measure the 
forward and angular speed of the robot (Vf,Vø). For kicking one needs to specify the kicking 
force (F). The pose of ball, goal and itself are measured using the vision system and the 
odometry (RPM of the wheels for mobile robots or steps for walking robots). Figure 4 shows 
that all perception modules, e.g. as to mind ones own pose, can be split into a part to 
discover the pose when the pose is un-known and a module to track the pose when it is 
well-known.  
To program behaviors of an autonomous system that needs to function under all 
circumstances in any environment, is often similar to maintaining a house of cards. 
Moreover, as one can not foresee as designer all possible states that the system encounter in 
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its life, learning the behaviors, e.g. based on reinforcement (Sutton & Barto, 1998); 
(Takahashi & Asada, 2004) is a valuable solution to overcome and learn from unknown 
situations. However, when the dimension of input-output / state-action space becomes too 
high (>8) learning becomes cumbersome (Jonker et al, 2004); (Dietterich, 2000). Hence, even 
/ especially when reinforcement learning methods are used, one should aim for layered, 
modular “sense-think-act” architectures in which we can learn the basic behaviors and 
perhaps even the perceptions. 

Figure 4.  Soccer playing robot in the role of striker; perception viewpoint 

3. Behavior Based Perception 

In the previous chapter we argued that a layered modular architecture of sense-think-act 
modules is necessary to obtain robust software and we should prepare for systems that are 
able to learn their own behavior. In this chapter we will go one step further and argue that the 
perception modules should even be made specific for the behavior modules they serve. This 
notion of behavior specific perception modules was developed during a research project at 
Delft University of Technology (Mantz, 2004) and published before (Mantz et al, 2005).  
The perception problem differs widely over different behaviors. At first this has to do with 
the location of robots. A robot guarding his own goal will mainly see the lines surrounding 
his penalty area, a couple of flags, and the opponent goal (far away). A striker will mainly 
see its opponent’s goal (from not too far). At second, the perception problem is also greatly 
influenced by the kind of action the robot performs. When a robot is walking around, with 
its head at horizons’ level, turning from left to right, it will likely perceive many objects and 
the quality of localization will be high. When the robot e.g. is handling a ball with its head 
(containing the camera), it will likely perceive neither goals nor flags for a longer period of 
time, and the quality of perception based localization will be very poor. One general vision 
system, serving all these behaviors, will be very complex and difficult to understand. It is 
difficult to oversee how changes, made to the system in order to improve performance in a 
certain behavior, will influence performance in other behaviors. Also in a general vision 
system, all algorithms will always be running. Even when not necessary in a specific 
behavior they will still use resources and limit the available resources for algorithms that do 
matter.
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Because the perception problem can differ so widely over different behaviors, we have 
developed a software architecture for a team of soccer robots, with a behavior-based 
hierarchy of modules (Lenser et al, 2002) in which each module is treated and implemented 
as a separate sense-think-act loop. We will show that this architecture performs similar or 
better than an architecture based on monolithic discipline based modules, even when we 
omit learning.  
With this new architecture we expect the following improvements: 
1. That each (sense-think-act) module is simpler and hence can be better understood and       

used to design other behaviors (copy-past-modify) by other developers.  
2. That effectively less and less complicated, code is running in the new situation then it 

was in the old situation. The crux in this is that in the old situation the code that was 
running not always contributed to the behavior, but was merely there for “general-
purposeness”.

3. That our goalkeeper performs better and more robust because it can use information on 
its location and behavior (action).  

Location and behavior information (point 3) can be used either in improving the self 
localisation algorithms, which we call behavior specific self localisation or it can directly be 
used in optimizing the image processing algorithms, which we call behavior-specific image 
processing. Below we will discuss both options.  

3.1 Behavior specific self localisation 

With behavior specific self localisation, we make the self localisation algorithms specific for 
different behaviors. The first reason why behavior-specific self localisation can increase 
performance, is because it can use information on the kind of action the robot is performing. 
E.g. when particle filters are used for self localization, one always has to make a trade-off 
between robustness and speed. If the particles are updated slowly on new sensor inputs, the 
system is more robust against false sensor inputs. If the particles are updated fast, the 
system can be accurate despite unmodeled movements, such as uncertainty in odometry 
evaluation, collisions, or a pickup (kidnap) by the referee. With behavior-specific self 
localistation we can go for speed or robusness when required. When a robot is positioning 
(e.g. a goalie standing in the goal, or a field player walking around), the sensor input is 
qualitatively high and accurate localization is our aim; hence we use a fast update of the 
particles. When a robot is handling a ball, the sensor input has a low quality and the 
updating of the robot’s pose is less urgent; hence we use a slow update of the particles. 
Secondly, behavior-specific self localisation can increase performance by using the location 
information for a certain behavior. If a postion is already well known, the self locator could 
(partly) discard percepts indicating a totally different position. The self locator could also 
directly be told on which percepts it should put more or less emphasis on. E.g. For the 
goalie, the self localisation could always make less use of perceptions of its own goal. For a 
striker, the self localisation could put extra emphasis on detections of the opponent’s goal.  
In most situations, the best way to implement behavior-specific self localisation is to build 
one general self locator that takes paramters that can be set from the behaviors. These 
parameters could indicate the overall update rate of all particles, the rate of rejecting outlier 
measurments, and a weight for each possible detected object (blue goal, yellow goal, lines, 
blue flag… etc). If the situation or requirement in a certain behavior is really different from 
that in other behaviors, one could decide to implement an entire new self locator algorithm.  
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3.2 Behavior specific image processing 

With behavior specific image processing, we optimize the image processing algorithms for 
different behaviors. What the robot can see, highly depends on the robot's location, which is 
strongly correlated with its behavior.  There are several ways in which location information 
can lead to better localisation. 
At first, unexpected objects can be discarded. The great advantage of discarding unexpected 
objects, is that they can not lead to false positives. We have experienced that many of the 
localisation problems are not due lack of good measuremenst, but because it thinks it sees 
objects where they are not ( see Figure 5).  

Figure 5. False positive. The robot not only detects the yellow goal, but also mistakes some 
blue in the playing field for a blue goal 

Note that discarding unexpected objects could also be done in the self locator. The 
advantage of discarding them in an earlier stage, i.e. in the image processing stage is that the 
locator algorithms don’t need to be executed, which saves CPU cycles.  
Secondly, behavior specific image processing can be used to allow for different detection 
schemes for the same object, using e.g. distance information. A goalie for example, will see 
the opponent flag at far distance (fig 6a), while an attacker might come much closer to the 
same flag (fig 6b). Using different algorithms for the two situations could improve the 
performance of the detection. 

Figure 6. Images of a blue/pink flag; a) at 5 meter distance; b) at 30 cm distance 

Finally, we could use image processing algorithms that are even more role c.q. behavior 
specific. E.g. a goalie could be localising mainly on the detection of the lines surrounding the 
penalty area. A defender could be localising mainly on the detection of the circle in the 
middle of the playing field.  
The way we have implemented behavior-specific image processing, is by making the image 
processing completely modular. The detection of a goal, flag, lines or ball are all in separate 
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modules and can be called independently. When an algorithm is called it takes a parameter, 
indicating e.g. the color of the object (blue/yellow), and the size (far/near). Every cycle, 
when the central image processing module is called, it will call a set of image processing 
algorithms, dependent on the behavior. In chapter 6 we will show the other advantages we 
found by making image processing completely modular.  

3.3 Drawbacks of behavior based vision

There are limits and drawbacks to applying multiple sense-think-act loops to the vision 
system of robots.  
The first thing to consider is that the use of location information in the image processing and 
self localization for discarding unexpected objects, gives rise to the chance of entering a local 
loop: when the robot would discard information based on a wrong assumption of its own 
position, it could happen the robot would not be able to retrieve its correct position. For 
avoiding local loops, periodic checking mechanisms on the own position are required (on a 
lower pace). Also one could restrict the runtime of behaviors in which much information is 
discarded and invoke some relocation behavior to be executed periodically.        
The second drawback is, that due to less reusability, and more implementations of 
optimized code, the overall size of the system will grow. This influences the time it will take 
to port code to a new robot, or to build new robot-software from scratch.  
The third drawback is that for every improvement of the system (for every sense-think-act 
loop), some knowledge is needed of the principles of image processing, mechanical 
engineering, control theory, AI and software engineering. Because of this, behavior-
designers will probably reluctant to use the behavior-specific vision system. Note, however, 
that even if behavior designer are not using behavior-dependent vision, the vision system 
can still be implemented. In worst case a behavior designer can choose to select the general 
version of the vision system for all behaviors, and the performance will be the same as 
before.

4. Algorithms in old software 

Figure 7. Simplified software architecture for a soccer-playing Aibo robot in the Dutch Aibo 
Team
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In this paragraph, an overview will be given of the software architecture of soccer robots 
(Sony Aibo ERS-7) in the Dutch Aibo Team (Oomes et al, 2004), which was adapted in 2004 
from the code of the German Team of 2003 (Rofer et al, 2003). This software was used as a 
starting point for implementing the behavior-based vision system as is described in the next 
paragraph. The DT2004 software was also used for testing the performance of new systems. 
In Fig 7. A simplified overview of the DT2004 software architecture is depicted. The 
architecture can be seen as one big sense-think-act loop. Sensor measurements are processed 
by, Image Processing, Self Localisation, Behavior Control and Motion Control sequentially, 
in order to plan the motions of the actuators. Note that this simplified architecture only 
depicts the modules most essential to our research. Other modules, e.g. for detecting 
obstacles or other players, and modules for controlling LEDs and generating sounds, are 
omitted from the picture.      

4.1 Image Processing 

The image processing is the software that generates percepts (such as goals, flags, lines and 
the ball) from the sensor input (camera images).  In the DT2004 software, the image 
processing uses a grid-based state machine (Bruce et al, 2000), with segmentation primarily 
done on color and secondarily by shapes of objects. 
Using a color table  
A camera image consists of 208*160 pixels. Each of these pixels has a three-dimensional 
value p(Y,U,V). Y represents the intensity; U and V contain color-information; each having 
an integer value between 0 and 254. In order to simplify the image processing problem, all 
these 254*254*254 possible pixel-values are mapped onto only 10 possible colors: white, 
black, yellow, blue, sky-blue, red, orange, green, grey and pink, the possible colors of objects 
in the playing field. This mapping makes use of a color-table, a big 3-dimensional matrix 
which stores which pixel-value corresponds to which color. This color-table is calibrated 
manually before a game of soccer. 
Grid-based image processing 
The image processing is grid-based. For every image, first the horizon is calculated from the 
known angles of the head of the robot. Then a number of scan-lines is calculated 
perpendicular to that horizon. Each scan-line then is then scanned for sequences of colored-
pixels. When a certain sequence of pixels indicates a specific object, the pixel is added to a 
cluster for that possible object. Every cluster will be evaluated to finally determine whether 
or not an object was detected. This determination step uses shape information, such as the 
width and length of the detected cluster, and the position relative to the robot.  
Grid-based image processing is useful not only because it processes only a limited number 
of pixels, saving CPU cycles, but also that each image is scanned relative to the horizon. 
Therefore processing is independent of the position of the robots’ head (which varies widely 
for an Aibo Robot).   

4.2 Self Localisation 

The self localisation is the software that obtains the robot‘s pose (x,y, ø) from output of the 
image processing, i.e. the found percepts. The approach used in the Dutch Aibo Team is 
particle filtering, or Monte Carlo Localization, a probability-based method (Thrun, 2002); 
(Thrun et al, 2001); (Röfer & Jungel, 2003). The self locator keeps tracks of a number of 
particles, e.g. 50 or 100.  
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Each particle basically consists of a possible pose of the robot, and of a probability. Each 
processing cycle consists of two steps, updating the particles and re-sampling them. The 
updating step starts by moving all particles in the direction that the robot has moved 
(odometry), adding a random offset. Next, each particle updates its probability using 
information on percepts (flags, goals, lines) generated by the image processing. Also in this 
step the pose of the particles can be slightly updated, e.g. using the calculated distance to the 
nearest lines. In the second step, all particles are re-sampled. Particles with high 
probabilities are multiplied; particles with low probabilities are removed.  
A representation of all 50 particles is depicted in figure 8.  

Figure 8. The self localization at initialization; 100 samples are randomly divided over the 
field. Each sample has a position x, y, and heading in absolute playing-field coordinates. The 
robot‘s pose (yellow robot) is evaluated by averaging over the largest cluster of samples. 

4.3 Behavior Control 

Figure 9. General simplified layout of the first layers of the behavior Architecture of the 
DT2004-soccer agent. The rectangular shapes indicate options; the circular shape indicates a 
basic behavior. When the robot is in penalized state and standing, all the dark-blue options 
are active 
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Behavior control can be seen as the upper command of the robot. As input, behavior control 
takes high level information about the world, such as the own pose, the position of the ball 
and of other players. Dependent on its state, behavior control will then give commands to 
motion control, such as walk with speed x, look to direction y, ... Behavior control in the 
DT2004 software is implemented as one gigantic state machine, written in XABSL (Lötzsch 
et al, 2004), an XML based behavior description language. The state machine distinguishes 
between options, states and basic behaviors. Each option is a separate XABSL file. Within 
one option, the behavior control can be in different states. E.g. in Figure 9, the robot is in the 
penalized state of the play soccer option, and therefore calls the penalized option. Basic 
behaviors are those behaviors that directly control the low level motion. The stand behavior 
in Figure 9 is an example of a basic behavior. 

4.4 Motion control 

Motion control is the part that calculates the joint-values of the robots joints. Three types of 
motion can be identified in the DT2004 software: 
• Special actions  
A special action is a predefined set of joint-values that is executed sequentially, controlling 
both leg and head joints. All kicking motions, get-up actions and other special movements 
are special actions.   
• Walking engine 
All walking motions make use of an inverse kinematics walking engine. The engine takes a 
large set of parameters (approx. 20) that result in walking motions. These parameters can be 
changed by the designer. The walking engine mainly controls the leg joints.   
• Head motion 
The head joints are controlled by head control, independently from the leg joints. The head 
motions are mainly (combinations of) predefined loops of head joint values. The active head 
motion can be controlled by behavior control.  

5. Behavior-Based perception for a goalie 

This paragraph describes our actual implementation of the behavior-based vision system for 
a goalie in the Dutch Aibo Team. It describes the different sense-think-act loops identified, 
and the changes made in the image processing and self localisation for each loop. All 
changes were implemented starting with the DT2004 algorithms, described in the previous 
paragraph. 

5.1 Identified behaviors for a goalie.  

For the goalkeeper role of the robot we have identified three different mayor behaviors, 
which each will be implemented as a separate sense-think-act loops. When the goalie is not 
in its goal (Figure 11a), it will return to its goal using the return-to-goal behavior. When there 
is no ball in the penalty area (Figure 11b) , the robot will position itself between the ball and 
the goal, or in the center of the goal when there is no ball in sight. For this the goalie will call 
the position behavior. When there is a ball in the penalty area (Figure 11c), the robot will call 
the clear-ball behavior to remove the ball from the penalty area. Figure 10 shows the software 
architecture for the goalie, in which different vision and localisation algorithms are called 
for the different behaviors. The 3 behaviors are controlled by a meta-behavior (Goalie in 
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Figure 10) that may invoke them. We will call this meta-behavior the goalie’s governing 
behavior.

Figure 10. Cut-out of the hierarchy of behaviors of a soccer robot, with emphasis on the 
goalkeeper role. Each behavior (e.g. position) is an independently written sense-think-act loop 

a)  b)  c) 
Figure 11. Basic goalie behaviors: a) Goalie-return-to goal, b) Goalie-position, c) Goalie-clear 
ball. For each behavior a different vision system is used and a different particle filter setting 

5.2 Specific perception used for each behavior.  

For each of the 3 behaviors, identified in Figures 10 and 11, we have adapted both the image 
processing and self localization algorithms in order to improve localization performance. 
• Goalie-return-to-goal. When the goalie is not in his goal area, he has to return to it. The 
goalie walks around scanning the horizon. When he has determined his own position on the 
field, the goalie tries to walk straight back to goal - avoiding obstacles - keeping an eye on 
his own goal. The perception algorithms greatly resemble the ones of the general image 
processor, with some minor adjustments.  
Image-processing searches for the own goal, line-points, border-points and the two corner 
flags near the own goal. The opponent’ goal and flags are ignored.  
For localisation, an adjusted version of the old DT2004 particle filter is used, in which a 
detected own goal is used twice when updating the particles. 
• Goalie- position. The goalie is in the centre of its goal when no ball is near. It sees the 
field-lines of the goal area often and at least one of the two nearest corner flags regularly. 
Localisation is mainly based of the detection of the goal-lines; the flags are used only to 
correct if the estimated orientation is off more than 450 off. This is necessary because the 
robot has no way (yet) to distinguish between the four lines surrounding the goal.   
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Image processing is used to detect the lines of the goal-area and for detecting the flags. The 
distance and angle to goal-lines are detected by applying a Hough transform on detected 
line-points.  
For the detection of the own flags a normal flag detection algorithm is used, with the 
adjustment that too small flags are rejected, since the flags are expected relatively near.  
For self localization, a special particle filter was used that localized only on the detected 
lines and flags. A background process verifies the “in goal” assumption on the average 
number of detected lines and flags. 
• Goalie-clear-ball. If the ball enters the goal area, the goalie will clear the ball.  
The image processing in this behavior is identical to that in the goalie-position behavior. The 
goalie searches for the angles and distances to the goal-lines, and detects the flags nearest to 
the own goal.  
However, the self localization for the clear_ball behavior is different from that of the position
behavior. When the goalie starts clearing the ball, the quality of the perception input will be 
very low. We have used this information, both for processing detected lines, and for 
processing detected flag.  
For flags we have used a lower update rate: it will take longer before the detection of flags at 
a different orientation will result in the robot changing its pose. Lines detected at far off 
angles or distances, resulting in a far different robot-pose, are ignored. The reason for this 
mainly is that while clearing the ball, the goalie could come outside its’ penalty area. In this 
case we don’t want the robot to mistake a border line or the middle-line for a line belonging 
to the goal area.   
When the goalie clears a ball, there is no checking mechanism to check the “in goal” 
assumption, as was in the position behavior. When the goalie has finished clearing the ball 
and has returned to the position behavior, this assumption will be checked again.  

6. Object-Specific Image Processing 

In other to enable behavior-dependent image processing, we have split up the vision system 
into a separate function per object to detect. We have distinguished between types of objects, 
(goals, flags), color of objects (blue/yellow goal), and take a parameter indicating the size of 
the objects (far/near flag). In stead of using one general grid and one color table for 
detecting all objects (Figure 12 left), we define a specific grid and specific color-table for each 
object (Figure 12 right).  
For example, for detecting a yellow/pink flag (Figure 13b), the image is scanned only above 
the horizon, limiting the used processing power and reducing the chance on an error. For 
detecting the lines or the ball, we only can scan the image below the horizon (Figure 13a).  
For each object we use a specific color-table (CT). In general, CTs have to be calibrated 
(Bruce at al, 2000). Here we only calibrated the CT for the 2 or 3 colors necessary for 
segmentation. This procedure greatly reduces the problem of overlapping colors. Especially 
in less well lighted conditions, some colors that are supposed to be different appear with 
identical Y,U,V values in the camera image. An example of this can be seen in Figures 14a-f. 
When using object-specific color tables, we don’t mind that parts of the “green” playing 
field have identical values as parts of the “blue” goal. When searching for lines, we define 
the whole of the playing field as green (Figure 14e). When searching for blue goals, we 
define the whole goal as blue (Figure 14c). A great extra advantage of having object-specific 



Behavior-Based Perception for Soccer Robots 77

color-tables is that it takes much less time to calibrate them. Making a color table as in 
Figure 14b, which has to work for all algorithms, can take a very long time.  

Figure 12.  General versus object-specific image processing. Left one can see the general 
image processing. A single grid and color-table is used for detecting all candidates for all 
objects. In the modular image processing (right), the entire process of image processing is 
object specific 

       a)               b)      c) 
Figure 13. Object-specific image processing: a) for line detection we scan the image below 
the horizon, using a green-white color table; b) for yellow flag detection we scan above the 
horizon using a yellow-white-pink color table; c) 2 lines and 1 flag detected in the image 

Figure 14. a) camera image; b) segmented with a general color-table; c) segmented with a 
blue/green color-table; d) segmented with a blue/white/pink color-table for the detection 
of a blue flag; e) segmented with a green/white color-table; f) segmented with a 
yellow/green color-table for the detection of the yellow goal



Vision Systems: Applications 78

7. Performance Measurements 

7.1 General setup of the measurements 

In order to prove our hypothesis that a goalie with a behavior-based vision system is more 
robust, we have performed measurements on the behavior of our new goalie.  
The localisation performance is commonly evaluated in terms of accuracy and/or 
reactiveness of localisation in test environments dealing with noisy (Gaussian) sensor-
measurements (Röfer & Jungel, 2003). We, however, are interested mainly in terms of the 
system’s reliability when dealing with more serious problems such as large amounts of false 
sensor data input, or limited amounts of correct sensor input. 
The ultimate test is how much goals does the new goalie prevent under game conditions in 
comparison with the old goalie? Due to the hassle and chaotic play around the goal when 
there is an attack, the goalie easily loses track of where he is. So our ultimate test is now 
twofold:
1. How fast can the new goalie find back his position in the middle of the goal on a 

crowded field in comparison with the old goalie 
2. How many goals can the new goalie prevent on a crowded field within a certain time 

slot in comparison with the old goalie 
All algorithms for the new goalie are made object specific, as described in chapter 4. Since 
we also want to know the results of using behavior-based perception, results of all real-
world scenarios are compared not only to results obtained with the DT2004 system, but also 
with a general vision system that does implement all object-specific algorithms.  
The improvements due to object-specific algorithms are also tested offline on sets of images.  

7.2 Influence of Object-Specific Image Processing 

We have compared the original DT2004 image processing with a general version of our 
NEW image processing; meaning that the latter does not (yet) use behavior specific image 
processing nor self-localization. In contrast with the DT2004 code, the NEW approach does 
use object specific grids and color tables. Our tests consisted of, searching for the 2 goals, the 
4 flags, and all possible line- and border-points. The images sequences were captured with 
the robot’s camera, under a large variety of lighting conditions (Figure 15).  A few images 
from all but one of these lighting condition sequences were used to calibrate the Color-
Tables (CTs). For the original DT2004 code, a single general CT was calibrated for all colors 
that are meaningful in the scene, i.e.: blue, yellow, white, green, orange and pink. This 
calibration took three hours. For the NEW image processing code we calibrated five 3-color 
CTs (for the white-on-green lines, blue-goal, blue-flag, yellow-goal, and yellow-flag 
respectively). This took only one hour for all tables, so 30% of the original time. 

Figure 15. Images taken by the robots camera under different lighting conditions: a) Tube-
light; b) Natural-light; c) Tube-light + 4 floodlights + natural light. 
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For all image sequences that we had acquired, we have counted the number of objects that 
were detected correctly (N true) and detected falsely (N false). We have calculated also the 
correctly accepted rate (CAR) being the number of objects that were correctly detected 
divided by the number of objects that were in principle visible. Table 1 shows the results on 
detecting flags and lines. The old DT2004 image processor uses a general grid and a single 
color table, the NEW modular image processor uses object-specific grids and color-tables 
per object. The calculation of the correctly accepted rate is based on 120 flags/goals that 
were in principle visible in the first 5 image sequences and 360 flags/goals in principle 
visible in the set where no calibration settings were made for. The image sequences for line 
detection each contained on average 31-33 line-points per frame.  

Goals and flags DT2004   NEW   DT2004 NEW 

 N true CAR
(%) N false N true CAR

(%) N false Lines
 (%) 

Lines
(%)

1 flood light 23 19 0 65 54 0 18 94 
Tube light 54 45 9 83 83 1 58 103 
4 flood lights 86 72 0 99 99 0 42 97 
Tube +flood lights 41 34 1 110 92 0 24 91 
Tube,flood+natural 39 33 0 82 68 0 42 91 
Natural light 47 39 0 68 57 0   
Non calibration set 131 44 28 218 73 16   

Table 1. The influence of object-specific algorithms for goal, flag and line detection 

Table 1 shows that due to using object specific grids and color tables, the performance of the 
image processing largely increased. The correctly accepted rate (CAR) goes up from about 
45 % to about 75%, while the number of false positives is reduced. Moreover, it takes less 
time to calibrate the color-tables. The correctly accepted rate of the line detection even goes 
up to over 90%, also when a very limited amount of light is available (1 Flood light). 

7.4 Influence of behavior based perception 

In the previous tests we have shown the improvement due to the use of object specific grids 
and color tables. Below we show the performance improvement due to behavior based 
switching of the image processing and the self localization algorithm (the particle filter). We 
used the following real-world scenarios. 
• Localize in the penalty area. The robot is put into the penalty area and has to return to a 

predefined spot as many times as possible within 2 minutes. 
• Return to goal. The robot is manually put onto a predefined spot outside the penalty 

area and has to return to the return-spot as often as possible within 3 minutes. 
• Clear ball. The robot starts in the return spot; the ball is manually put in the penalty 

area every time the robot is in the return spot. It has to clear the ball as often as possible 
in 2 minutes. 

• Clear ball with obstacles on the field. We have repeated the clear ball tests but then with 
many strange objects and robots placed in the playing field, to simulate a more natural 
playing environment.
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Figure 16. Results for localisation in the penalty area. The number of times the robot can re-
localise in the penalty area within 2 minutes. The old DT2004 vision system cannot localise 
when there is little light (TL). The performance of the object specific image processing 
(without specific self localisation) is shown by the “flags and lines” bars. In contrast with the 
DT2004 code, the striker uses object specific image processing. The goalie uses object specific 
image processing, behavior based image processing and behavior based self localisation 

In order to be able to distinguish between the performance increase due to object-specific 
grids and color-tables, and the performance increase due to behavior-dependent image 
processing and self localisation, we used 3 different configurations. 
• DT2004: The old image processing code with the old general particle filter. 
• Striker: The new object-specific image processing used in combination with the old 

general particle filter of which the settings are not altered during the test. 
• Goalie: The new object-specific image processing used in combination with object-

specific algorithms for detecting the field lines, and with a particle filter of which the 
settings are altered during the test, depending on the behavior that is executed (as 
described in chapter 5). 

The results can be found in Figures 16-19. 

Figure 17. Results of the return to goal test. The robot has to return to its own goal as many 
times as possible within 3 minutes. The striker vision systems works significantly better 
than the DT2004 vision system. There is not a very significant difference in overall 
performance between the striker (no behavior-dependence) and the goalie (behavior 
dependence). This shows that the checking mechanism of the “in goal” assumption works 
correctly 
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Figure 18. (left). Results of the clear ball test. The robot has to clear the ball from the goal 
area as often as he can in 2 minutes. Both the striker and the goalie vision systems are more 
robust in a larger variety of lighting conditions than the DT2004 vision system (that uses a 
single color table). The goalie’s self-locator, using detected lines and the yellow flags, works 
up to 50 % better than the striker self-locator, which locates on all line-points, all flags and 
goals 

Figure 18 (right). Results of the clear ball with obstacles on the field test. The goalie vision 
system, which uses location information to disregard blue flags/goals and only detects large 
yellow flags, is very robust when many unexpected obstacles are visible in or around the 
playing field.

8. Results 

• The impact of behavior-based perception can be seen from the localization test in the 
penalty area (Figure 16) and from the clear-ball tests (Figure 18). The vision system of 
the goalie, with behavior based vision and self localisation, performs > 50 % better on 
the same task as a striker robot with a vision system without behavior-based perception.  

• With object-specific grids and color-tables, the performance of the image processing 
(reliability) under variable lighting conditions has increased with 75-100% on sets of off-
line images, while the color calibrating time was reduced to 30%. 

• Behavior-based perception and object-specific image processing combined allows for 
localization in badly lighted conditions, e.g. with TL tube light only (Figure 16-18). 

• The impact of discarding unexpected objects on the reliability of the system can most 
clearly be seen from the clear ball behavior test with obstacles on the field (Figure 18, 
right). With TL + Floods, the striker apparently sees unexpected objects and is unable to 
localize, whereas the goalie can localize in all situations.  

• Using all object specific image processing algorithms at the same time requires the same 
CPU load as the old general DT2004 image processor. Searching for a limited number of 
objects in a specific behavior can therefore reduce the CPU load considerably. 

• Due to the new architecture, the code is more clean and understandable; hence better 
maintainable and extendable. The main drawback is that one has to educate complete 
system engineers instead of sole image processing, software, AI, and mechanical 
experts.
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1. Introduction  

Interest on using mobile autonomous agents has been growing (Weiss, G., 2000), (K. Kitano; 
Asada, M.; Kuniyoshi, Y.; Noda, I. &  Osawa E., 1997) due to their capacity to gather 
information on their operating environment in diverse situations, from rescue to demining 
and security. In many of these applications, the environments are inherently unstructured 
and dynamic, and the agents depend mostly on visual information to perceive and interact 
with the environment. In this scope, computer vision in a broad sense can be considered as 
the key technology for deploying systems with an higher degree of autonomy, since it is the 
basis for activities like object recognition, navigation and object tracking. 
Gathering information from such type of environments through visual perception is an 
extremely processor-demanding activity with hard to predict execution times (Davison, J., 
2005). To further complicate the situation many of the activities carried out by the mobile 
agents are subject to real-time requirements with different levels of criticality, importance 
and dynamics. For instance, the capability to timely detect obstacles near the agent is a hard 
activity, since failures can result in injured people or damaged equipment, while activities 
like self-localization, although important for the agent performance, are inherently soft since 
extra delays in these activities simply cause performance degradation. Therefore, the 
capability to timely process the image at rates high enough to allow visual-guided control or 
decision-making, called real-time computer vision (RTCV) (Blake, A; Curwen, R. & 
Zisserman, A., 1993), plays a crucial role in the performance of mobile autonomous agents 
operating in open and dynamic environments. 
This chapter describes a new architectural solution for the vision subsystem of mobile 
autonomous agents that substantially improves its reactivity by dynamically assigning 
computational resources to the most important tasks. The vision-processing activities are 
broken into separated elementary real-time tasks, which are then associated with adequate 
real-time properties (e.g. priority, activation rate, precedence constraints). This separation 
allows avoiding the blocking of higher priority tasks by lower priority ones as well as to set 
independent activation rates, related with the dynamics of the features or objects being 
processed, together with offsets that de-phase the activation instants of the tasks to further 



Vision Systems: Applications 84

reduce mutual interference. As a consequence it becomes possible to guarantee the 
execution of critical activities and privilege the execution of others that, despite not critical, 
have large impact on the robot performance. 
The framework herein described is supported by three custom services:  
• Shared Data Buffer (SDB), allowing different processes to process in parallel a set of 

image buffers;  
• Process Manager (PMan), which carries out the activation of the vision-dependent real-

time tasks; 
• Quality of Service manager (QoS), which dynamically updates the real-time properties 

of the tasks. 
The SDB service keeps track of the number of processes that are connected to each image 
buffer. Buffers may be updated only when there are no processes attached to them, thus 
ensuring that processes have consistent data independently of the time required to complete 
the image analysis.
The process activation is carried out by a PMan service that keeps, in a database, the process 
properties, e.g. priority, period and phase. For each new image frame, the process manager 
scans the database, identifies which processes should be activated and sends them wake-up 
signals. This framework allows reducing the image processing latency, since processes are 
activated immediately upon the arrival of new images. Standard OS services are used to 
implement preemption among tasks. 
The QoS manager monitors continuously the input data and updates the real-time 
properties (e.g. the activation rate) of the real-time tasks. This service permits to adapt the 
computational resources granted to each task, assuring that in each instant the most 
important ones, i.e. the ones that have a greater value for the particular task being carried 
out, receive the best possible QoS. 
The performance of the real-time framework herein described is assessed in the scope of the 
CAMBADA middle-size robotic soccer team, being developed at the University of Aveiro, 
Portugal, and its effectiveness is experimentally proven. 

Main
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Distributed sensing/

actuation system

External communication
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Figure 1. The biomorphic architecture of the CAMBADA robotic agents

The remainder of this chapter is structured as follows: Section 2 presents the generic 
computing architecture of the CAMBADA robots. Section 3 shortly describes the working-
principles of the vision-based modules and their initial implementation in the CAMABADA 
robots. Section 4 describes the new modular architecture that has been devised to enhance 
the temporal behavior of the image-processing activities. Section 5 presents experimental 
results and assesses the benefits of the new architecture. Finally, Section 6 concludes the 
chapter.
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2. The CAMBADA Computing Architecture 

2.1 Background 

Coordinating several autonomous mobile robotic agents in order to achieve a common goal 
is currently a topic of intense research (Weiss, G., 2000), (K. Kitano; Asada, M.; Kuniyoshi, 
Y.; Noda, I. &  Osawa E., 1997). One initiative to promote research in this field is RoboCup 
(K. Kitano; Asada, M.; Kuniyoshi, Y.; Noda, I. &  Osawa E., 1997), a competition where 
teams of autonomous robots have to play soccer matches.  
As for many real-world applications, robotic soccer players are autonomous mobile agents 
that must be able to navigate in and interact with their environment, potentially cooperating 
with each other. The RoboCup soccer playfield resembles human soccer playfields, though 
with some (passive) elements specifically devoted to facilitate the robots navigation. In 
particular the goals have solid and distinct colors and color-keyed posts are placed in each 
field corner. This type of environment can be classified as a passive information space 
(Gibson, J., 1979). Within an environment exhibiting such characteristics, robotic agents are 
constrained to rely heavily on visual information to carry out most of the necessary 
activities, leading to a framework in which the vision subsystem becomes an integral part of 
the close-loop control. In these circumstances the temporal properties of the image-
processing activities (e.g. period, jitter and latency) have a strong impact on the overall 
system performance.  

2.2 The CAMBADA robots computing architecture 

The computing architecture of the robotic agents follows the biomorphic paradigm (Assad, 
C.; Hartmann, M. &  Lewis, M., 2001), being centered on a main processing unit (the brain) 
that is responsible for the higher-level behavior coordination (Figure 1). This main 
processing unit handles external communication with other agents and has high bandwidth 
sensors (the vision) directly attached to it. Finally, this unit receives low bandwidth sensing 
information and sends actuating commands to control the robot attitude by means of a 
distributed low-level sensing/actuating system (the nervous system). 
The main processing unit is currently implemented on a PC-based computer that delivers 
enough raw computing power and offers standard interfaces to connect to other systems, 
namely USB. The PC runs the Linux operating system over the RTAI (Real-Time 
Applications Interface (RTAI, 2007)) kernel, which provides time-related services, namely 
periodic activation of processes, time-stamping and temporal synchronization. 
The agents software architecture is developed around the concept of a real-time database 
(RTDB), i.e., a distributed entity that contains local images (with local access) of both local 
and remote time-sensitive objects with the associated temporal validity status. The local 
images of remote objects are automatically updated by an adaptive TDMA transmission 
control protocol (Santos, F.; Almeida, L.; Pedreiras, P.; Lopes, S. &  Facchinnetti, T., 2004) 
based on IEEE 802.11b that reduces the probability of transmission collisions between team 
mates thus reducing the communication latency. 
The low-level sensing/actuating system follows the fine-grain distributed model (Kopetz, 
H., 1997) where most of the elementary functions, e.g. basic reactive behaviors and closed-
loop control of complex actuators, are encapsulated in small microcontroller-based nodes, 
interconnected by means of a network. This architecture, which is typical for example in the 
automotive industry, favors important properties such as scalability, to allow the future 
addition of nodes with new functionalities, composability, to allow building a complex 
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system by putting together well defined subsystems, and dependability, by using nodes to 
ease the definition of error-containment regions. This architecture relies strongly on the 
network, which must support real-time communication. For this purpose, it uses the CAN 
(Controller Area Network) protocol (CAN, 1992), which has a deterministic medium access 
control, a good bandwidth efficiency with small packets and a high resilience to external 
interferences. Currently, the interconnection between CAN and the PC is carried out by 
means of a gateway, either through a serial port operating at 115Kbaud or through a serial-
to-USB adapter. 

3. The CAMBADA Vision Subsystem 

The CAMBADA robots sense the world essentially using two low-cost webcam-type 
cameras, one facing forward, and the other pointing the floor, both equipped with wide-
angular lenses (approximately 106 degrees) and installed at approximately 80cm above the 
floor. Both cameras are set to deliver 320x240 YUV images at a rate of 20 frames per second. 
They may also be configured to deliver higher resolution video frames (640x480), but at a 
slower rate (typically 10-15 fps). The possible combinations between resolution and frame-
rate are restricted by the transfer rate allowed by the PC USB interface.
The camera that faces forward is used to track the ball at medium and far distances, as well 
as the goals, corner posts and obstacles (e.g. other robots). The other camera, which is 
pointing the floor, serves the purpose of local omni-directional vision and is used for mainly 
for detecting close obstacles, field lines and the ball when it is in the vicinity of the robot. 
Roughly, this omni-directional vision has a range of about one meter around the robot.  
All the objects of interest are detected using simple color-based analysis, applied in a color 
space obtained from the YUV space by computing phases and modules in the UV plane. We 
call this color space the YMP space, where the Y component is the same as in YUV, the M 
component is the module and the P component is the phase in the UV plane. Each object 
(e.g., the ball, the blue goal, etc.) is searched independently of the other objects. If known, 
the last position of the object is used as the starting point for its search. If not known, the 
center of the frame is used. The objects are found using region-growing techniques. 
Basically, two queues of pixels are maintained, one used for candidate pixels, the other used 
for expanding the object. Several validations can be associated to each object, such as 
minimum and maximum sizes, surrounding colors, etc. 
Two different Linux processes, Frontvision and Omnivision, handle the image frames 
associated with each camera. These processes are very similar except for the specific objects 
that are tracked. Figure 2 illustrates the actions carried out by the Frontvision process. Upon 
system start-up, the process reads the configuration files from disk to collect data regarding 
the camera configuration (e.g. white balance, frames-per-second, resolution) as well as object 
characterization (e.g. color, size, validation method). This information is then used to 
initialize the camera and other data structures, including buffer memory. Afterwards the 
process enters in the processing loop. Each new image is sequentially scanned for the 
presence of the ball, obstacles, goals and posts. At the end of the loop, information regarding 
the diverse objects is placed in a real-time database.  
The keyboard, mouse and the video framebuffer are accessed via the Simple DirectMedia 
Layer library (SDL) (SDL, 2007). At the end of each loop the keyboard is pooled for the 
presence of events, which allows e.g. to quit or dynamically change some operational 
parameters
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Initializations:
   - Read configuration files

     (Cameras, Objects)

  - Open and set-up camera devices

  - Initialize data structures

  - Initialize SDL

Sleep

Search Obstacles

Search Ball

Search  Goals

Search Posts

Update RTDB

Handle keyboard events

New image

ready

Figure 2. Flowchart of the Frontvision process 
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Figure 3. Ball tracking execution time histogram 

4. A Modular Architecture for Image Processing: Why and How 

As referred to in the previous sections, the CAMBADA robotic soccer players operate in a 
dynamic and passive information space, depending mostly on visual information to 
perceive and interact with the environment. However, gathering information from such 
type of environments is an extremely processing-demanding activity (DeSouza, G &  Kak, 
A., 2004), with hard to predict execution times. Regarding the algorithms described in 
Section 3, it could be intuitively expected to observe a considerable variance in process 
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execution times since in some cases the objects may be found almost immediately, when 
their position between successive images does not change significantly, or it may be 
necessary to explore the whole image and expand a substantial amount of regions of 
interest, e.g. when the object disappears from the robot field of vision (Davison, J., 2005). 
This expectation is in fact confirmed in reality, as depicted in Figure 3, which presents a 
histogram of the execution time of the ball tracking alone. Frequently the ball is located 
almost immediately, with 76.1% of the instances taking less than 5ms to complete. However, 
a significant amount of instances (13.9%) require between 25ms and 35ms to complete and 
the maximum observed execution time was 38,752 ms, which represents 77.5% of the inter-
frame period just to process a single object. 

Figure 4. Modular software architecture for the CAMBADA vision subsystem 

As described in Section 3, the CAMBADA vision subsystem architecture is monolithic with 
respect to each camera, with all the image-processing carried out within two processes 
designated Frontvision and Omnivision, associated with the frontal and omnidirectional 
cameras, respectively. Each of these processes tracks several objects sequentially. Thus, the 
following frame is acquired and analyzed only after tracking all objects in the previous one, 
which may take, in the worst case, hundreds of milliseconds, causing a certain number of 
consecutive frames to be skipped. These are vacant samples for the robot controllers that 
degrade the respective performance and, worse, correspond to black-out periods in which 
the robot does not react to the environment. Considering that, as discussed in Section 3, 
some activities may have hard deadlines, this situation becomes clearly unacceptable. 
Increasing the available processing power, either trough the use of more powerful CPUs or 
via specialized co-processor hardware could, to some extent, alleviate the situation (Hirai, 
S.; Zakouji, M & Tsuboi, T., 2003). However, the robots are autonomous and operate from 
batteries, and thus energy consumption aspects as well as efficiency in resource utilization 
render brut-force approaches undesirable. 

4.1 Using Real-Time Techniques to Manage the Image Processing 

As remarked in Section 1, some of the activities carried out by the robots exhibit real-time 
characteristics with different levels of criticality, importance and dynamics. For example, the 
latency of obstacle detection limits the robots maximum speed in order to avoid collisions 
with the playfield walls. Thus, the obstacle detection process should be executed as soon as 
possible, in every image frame, to allow the robot to move as fast as possible in a safe way. 
On the other hand, detecting the corner poles for localization is less demanding and can 
span across several frames because the robot velocity is limited and thus, if the localization 
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process takes a couple of frames to execute its output is still meaningful. Furthermore 
prediction methods (Iannizzotto, G., La Rosa, F. & Lo Bello, L., 2004) combined with 
odometry data may also be effectively used to obtain estimates of object positions between 
updates. Another aspect to consider is that the pole localization activity should not block the 
more frequent obstacle detection. This set of requirements calls for the encapsulation of each 
object tracking activity in different processes as well as for the use of preemption and 
appropriate scheduling policies, giving higher priority to most stringent processes. These 
are basically the techniques that were applied to the CAMBADA vision subsystem as 
described in the following section. 

4.2 A Modular Software Architecture 

Figure 4 describes the software modular architecture adopted for the CAMBADA vision 
subsystem. Standard Linux services are used to implement priority scheduling, preemption 
and data sharing. 
Associated to each camera there is one process (ReadXC) which transfers the image frame 
data to a shared memory region where the image frames are stored. The availability of a 
new image is fed to a process manager, which activates the object detection processes. Each 
object detection process (e.g. obstacle, ball), generically designated by proc_obj:x, x={1,2,…n} 
in  Figure 4, is triggered according to the attributes (period, phase) stored in a process 
database. Once started, each process gets a link to the most recent image frame available and 
starts tracking the respective object. Once finished, the resulting information (e.g. object 
detected or not, position, degree of confidence, etc.) is placed in a real-time database 
(Almeida, L.; Santos, F.; Facchinetti; Pedreiras, P.;  Silva, V. & Lopes, L., 2004), identified by 
the label “Object info”, similarly located in a shared memory region. This database may be 
accessed by any other processes on the system, e.g. to carry out control actions. A display 
process may also be executed, which is useful mainly for debugging purposes. 

4.2.1 Process Manager 

For process management a custom library called PMan was developed. This library keeps a 
database where the relevant process properties are stored. For each new image frame, the 
process manager scans the database, identifies which processes should be activated and 
sends them pre-defined wake-up signals.  
Table 1 shows the information about each process that is stored in the PMan database. 
The process name and process pid fields allow a proper process identification, being used to 
associate each field with a process and to send OS signals to the processes, respectively. The 
period and phase fields are used to trigger the processes at adequate instants. The period is 
expressed in number of frames, allowing each process to be triggered every n frames. The 
phase field permits de-phasing the process activations in order to balance the CPU load over 
time, with potential benefits in terms of process jitter. The deadline field is optional and 
permits, when necessary, to carry out sanity checks regarding critical processes, e.g. if the 
high-priority obstacle detection does not finish within a given amount of time appropriate 
actions may be required to avoid jeopardizing the integrity of the robot. The following 
section of the PMan table is devoted to the recollection of statistical data, useful for profiling 
purposes. Finally, the status field keeps track of the instantaneous process state (idle, 
executing).
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Process identification 
 PROC_name Process ID string 
 PROC_pid Process id 
Generic temporal properties 
 PROC_period Period ( frames) 
 PROC_phase Phase (frames) 
 PROC_deadline Deadline (μs)
QoS management 
 PROC_qosdata QoS attributes 
 PROC_qosupdateflag QoS change flag 
Statistical data 
 PROC_laststart Activation instant of last instance 
 PROC_lastfinish Finish instant of last instance 
 PROC_nact Number of activations 
 PROC_ndm Number of deadline misses 
Process status 
 PROC_status Process status 

Table 1. PMan process data summary 

The PMan services are accessed by the following API: 
• PMAN_init: allocates resources (shared memory, semaphores, etc) and initializes the 

PMan data structures; 
• PMAN_close: releases resources used by PMan; 
• PMAN_procadd: adds a given process to the PMan table; 
• PMAN_procdel: removes one process from the PMan table; 
• PMAN_attach: attaches the OS process id to an already registered process, completing  

the registration phase;  
• PMAN_deattach: clears the process id field from a PMan entry; 
• PMAN_QoSupd: changes the QoS attributes of a process already registered in the 

PMan table; 
• PMAN_TPupd: changes the temporal properties (period, phase or deadline) of a 

process already registered in the PMan table; 
• PMAN_epilogue: signals that a process has terminated the execution of one instance; 
• PMAN_query: allows to retrieve statistical information about one process; 
• PMAN_tick: called upon the availability of every new frame, triggering the activation 

of processes. 
The PMan service should be initialized before use, via the init function. The service uses OS 
resources that require proper shutdown procedures, e.g. shared memory and semaphores, 
and the close function should be called before terminating the application. To register in the 
PMan table, a process should call the add function and afterwards the attach function. This 
separation permits a higher flexibility since it becomes possible to have each process 
registering itself completely or to have a third process managing the overall properties of 
the different processes. During runtime the QoS allocated to each process may be changed 
with an appropriate call to QoSupd function. Similarly, the temporal properties of one 
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process can also be changed dynamically by means of the TPupd function. When a process 
terminates executing one instance it should report this event via the epilogue call. This 
action permits maintaining the statistical data associated with each process as well as 
becoming aware of deadline violations. The query call allows accessing the statistical data of 
each process registered in the database. This information can be used by the application for 
different purposes like profiling, load management, etc. Finally, the tick call is triggered by 
the process that interacts with the camera and signals that a new frame is ready for 
processing. As a consequence of this call the PMan database is scanned and the adequate 
processes activated. 

4.2.2 Shared Data Buffers 

As discussed previously, the robot application is composed by several processes which 
operate concurrently, each seeking for particular features in a given frame. The complexity 
of these activities is very dissimilar and consequently the distinct processes exhibit 
distinctive execution times. On the other hand the execution time of each process may also 
vary significantly from instance to instance, depending on the particular strategy followed, 
on the object dynamics, etc.. Consequently, the particular activation instants of the processes 
cannot be predicted beforehand. To facilitate the sharing of image buffers in this framework 
a mechanism called Shared Data Buffers (SDB) was implemented. This mechanism is similar 
to the Cyclic Asynchronous Buffers (Buttazzo, G.; Conticelli, F.; Lamastra, G. & Lipari, G., 
1997), and permits an asynchronous non-blocking access to the image buffers. When the 
processes request access to an image buffer automatically receive a pointer to the most 
recent data. Associated to each buffer there is a link count which accounts for the number of 
processes that are attached to each buffer. This mechanism ensures that the buffers are only 
recycled when there are no processes attached to them, and so the processes have no 
practical limit to the time during which they can hold a buffer.  
The access to the SDB library is made trough the following calls: 
• SDB_init: reserves and initializes the diverse data structures (shared memory, 

semaphores, etc); 
• SDB_close: releases resources associated with the SDB; 
• SDB_reserve: returns a pointer to a free buffer; 
• SDB_update: signals that a given buffer was updated with new data; 
• SDB_getbuf: requests a buffer for reading; 
• SDB_unlink: access to the buffer is no longer necessary. 
The init function allocates the necessary resources (shared memory, semaphores) and 
initializes the internal data structures of the SDB service. The close function releases the 
resources allocated by the init call, and should be executed before terminating the 
application. When the camera process wants to publish a new image it should first request a 
pointer to a free buffer, via the reserve call, copy the data and then issue the update call to 
signal that a new frame is available. Reader processes should get a pointer to a buffer with 
fresh data via the getbuf call, which increments the link count, and signal that the buffer is 
no longer necessary via the unlink call, which decrements the buffer link count. 

4.2.3 Dynamic QoS management 

As in many other autonomous agent applications, the robotic soccer players have to deal 
with an open and dynamic environment that cannot be accurately characterized at pre-
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runtime. Coping efficiently with this kind of ambiance requires support for dynamic 
reconfiguration and on-line QoS management (Burns, A; Jeffay, K.; Jones, M. et al, 1996). 
These features are generally useful to increase the efficiency in the utilization of system 
resources (Buttazzo, G.; Lipari, G., Caccamo, M. & Abeni. L., 2002) since typically there is a 
direct relationship between resource utilization and delivered QoS. In several applications, 
assigning higher CPU to tasks increases the QoS delivered to the application. This is true, for 
example, in control applications (Buttazzo, G. & Abeni, L., 2000), at least within certain 
ranges (Marti, P., 2002), and in multimedia applications (Lee, C.; Rajkumar, R. & Mercer, C., 
1996). Therefore, managing the resources assigned to tasks, e.g. by controlling their 
execution rate or priority, allows a dynamic control of the delivered QoS. Efficiency gains 
can be achieved in two situations: either maximizing the utilization of system resources to 
achieve a best possible QoS for different load scenarios or adjusting the resource utilization 
according to the application instantaneous QoS requirements, i.e. using only the resources 
required at each instant. 

Process Period 
(ms) Priority Offset

(ms) Purpose 

Ball_Fr 50 35 0 Ball tracking (front camera) 
BGoal / YGoal 200 25 50/150 Blue / Yellow Goal tracking  
BPost / YPost 800 15 100/200 Blue / Yellow Post tracking 
Avoid_Fr 50 45 0 Obstacle avoidance (front cam.) 
Ball_Om 50 40 0 Ball tracking (omni camera) 
Avoid_Om 50 45 0 Obstacle avoidance (omni camera) 
Line 400 20 0 Line tracking and identification 

Table 2. Process properties in the modular architecture 

Both situations referred above require an adequate support from the computational 
infrastructure so that the relevant parameters of tasks can be dynamically adjusted. Two of 
the functions implemented by the PMAN library, namely PMAN_TPupd and 
PMAN_QoSupd, allow changing dynamically and without service disruption the temporal 
properties of each process (period, phase and deadline) and to manage additional custom 
QoS properties (the Linux real-time priority in this case), respectively. The robots decision 
level uses this interface to adjust the individual process attributes in order to control the 
average CPU load and to adapt the rates and priorities of the diverse processes according to 
the particular role that the robots are playing in each instant.  

5. Experimental Results 

In order to assess the performance of the modular approach and compare it with the initial 
monolithic one, several experiments were conducted, using a PC with an Intel Pentium III 
CPU, running at 550MHz, with 256MB of RAM. This PC has lower capacity than those 
typically used on the robots but allows a better illustration of the problem addressed in this 
chapter. The PC runs a Linux 2.4.27 kernel, patched with RTAI 3.0r4. The image-capture 
devices are Logitech Quickcams, with a Philips chipset. The cameras were set-up to produce 
320*240 images at a rate of 20 frames-per-second (fps). The time instants were measured 
accessing the Pentium TSC. To allow a fair comparison all the tests have been executed over 
the same pre-recorded image sequence.  
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5.1 Monolithic Architecture assessment 

The code of the Frontvision and Omnivision processes (Section 3) was instrumented to 
measure the start and finishing instants of each instance. 

Process Max. 
(ms)

Min.
(ms)

Avg.
(ms)

St.Dev. 
(ms)

FrontVision 143 29 58 24 
OmniVision 197 17 69 31 

Table 3. FrontVision and OmniVision inter-activation statistical figures 

Figure 5 presents the histogram of the inter-activation intervals of both of these processes 
while Table 3 presents a summary of the relevant statistical figures. 
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Figure 5. Histogram of the inter-activation time of the FrontVision (top) and OmniVision 
(bottom) processes

The response time of both processes exhibits a substantial variance, with inter-activation 
times ranging from 17ms to near 200ms and an average inter-activation time of 58ms and 
69ms, respectively. Remembering that the image acquisition rate is 20 fps, corresponding to 
50ms between frames, these figures indicate a poor performance. In fact the image 
processing is part of the control loop and so the high jitter leads to a poor control 
performance, a situation further aggravated by the significant amount of dropped frames, 
which correspond to time lapses during which the robot is completely non-responsive to the 
environment.

5.2 Modular Architecture 

The different image-processing activities have been separated and wrapped in different 
Linux processes, as described in Section 4. Table 2 shows the periods, offsets and priorities 
assigned to each one of the processes.  
The obstacle avoidance processes are the most critical ones since they are responsible for 
alerting the control software of the presence of any obstacles in the vicinity of the robot, 
allowing it to take appropriate measures when necessary, e.g. evasive maneuvers or 
immobilization. 
Therefore these processes are triggered at a rate equal to the camera frame rate and receive 
the highest priority, ensuring a response-time as short as possible. It should be noted that 
these processes scan restricted image regions only, looking for specific features, thus their 
execution time is bounded and relatively short. In the experiments the measured execution 
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time was bellow 5ms for each one of the processes, therefore this architecture allows 
ensuring that every frame will be scanned for the presence of obstacles.  
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Figure 6. Front (left) and omni-directional (right) obstacle detection processes inter-
activation intervals 
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Figure 7. Omni-directional (left) and frontal (right) camera ball tracking processes inter-
activation intervals 
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Figure 8. Line (left) and yellow post (right) tracking processes inter-activation intervals 

The second level of priority is granted to the Ball_Om process, which tracks the ball in the 
omni-directional camera. This information is used when approaching, dribbling and kicking 
the ball, activities that require a low latency and high update rate for good performance. 
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Therefore this process should, if possible, be executed on every image frame, thus its period 
was also set to 50ms.  
The third level of priority is assigned to the Ball_Fr process, responsible for locating the ball 
in the front camera. This information is used mainly to approach the ball when it is at 
medium to far distance from the robot. Being able to approach the ball quickly and 
smoothly is important for the robot performance but this process is more delay tolerant than 
the Ball_Om process, thus it is assigned a lower priority. 

Process Max.
(ms)

Min.
(ms)

Average
(ms)

Standard deviation 
(ms)

Avoid_Fr 60.1 48.9 50.0 0.5 
Avoid_Om 60.1 45.9 50.0 1.6 
Ball_Om 60.1 46.0 50.0 1.6 
Ball_Fr 80.0 19.9 50.0 2.1 
Ygoal 362.2 61.1 207.9 58.3 
BGoal 383.9 60.9 208.4 66.6 
Line 564.7 235.6 399.9 71.9 
BPost 1055.8 567.9 799.9 87.2 
YPost 1156.4 454.4 799.6 114.3 

Table 4. Modular architecture statistical data of inter-activation intervals 

Some objects are stationary with respect to the play field. Furthermore, the robot localization 
includes an odometry subsystem that delivers accurate updates of the robot position during 
limited distances. This allows reducing the activation rate and priority of the processes 
related with the extraction of these features, without incurring in a relevant performance 
penalty. This is the case of BGoal and YGoal processes, which track the position of the blue 
and yellow goals, respectively, which were assigned a priority of 25 and a period of 200ms, 
i.e., every 4 frames. 
The field line detection process (Line) detects and classifies the lines that delimit the play 
field, pointing specific places in it. This information is used only for calibration of the 
localization information and thus may be run sparsely (400ms). Post detection processes 
(BPost and YPost) have a similar purpose. However, since the information extracted from 
them is coarser than from the line detection, i.e., it is affected by a bigger uncertainty degree, 
it may be run at even a lower rate (800ms) without a relevant performance degradation. 
The offsets of the different processes have been set-up to separate their activation as much 
as possible. With the offsets presented in Table 2, besides the obstacle and ball detection 
processes run every frame, no more than two other processes are triggered simultaneously. 
This allows minimizing mutual interference and thus reducing the response-time of lower 
priority processes. 
Figure 6, Figure 7 and Figure 8 show the inter-activation intervals of selected processes, 
namely obstacle, ball, line and yellow post tracking, which clearly illustrate the differences 
between the modular and the monolithic architectures regarding the processes temporal 
behavior. The processes that receive higher priority (obstacle detection, Figure 6) exhibit a 
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narrow inter-activation variance, since they are not blocked and preempt other processes 
that may be running. Figure 7 shows the inter-activation intervals of the ball tracking 
processes. As stated above, the ball tracking process on the omni-directional camera has a 
higher priority since its data is used by more time sensitive activities. For this reason its 
inter-activation interval is narrower than the ball tracking process related to the front 
camera. As discussed in Section 4, the ball-tracking processes exhibit a significant execution 
time variance, since in some cases they are able to find the ball almost immediately while in 
other cases the whole image is scanned. For this reason the lower-priority ball-tracking 
process (frontal camera) exhibits a significantly higher inter-activation jitter than the higher-
priority one. The same behavior is observed for the remaining processes, which see their 
inter-activation jitter increase as their relative priorities diminish. 
Table 4 shows statistical data regarding the inter-activation intervals of these processes, 
which confirm, in a more rigorous way, the behavior observed above. The processes are 
sorted by decreasing priorities exhibiting, from top to bottom, a steady increase in the gap 
between maximum and minimum values observed as well as in the standard deviation. This 
is expected since higher priority processes, if necessary, preempt lower priority ones 
increasing their response-time. 
Comparing the figures in Table 3 and Table 4, a major improvement can be observed with 
respect to the activation jitter of the most time-sensitive processes, which, for the most 
important tasks was reduced to 10ms (object avoidance and omni-directional ball tracking) 
and 30ms (frontal ball tracking). Furthermore, the standard deviation of the activation jitter 
of these processes is much lower (between 0.5ms and 2.1ms) and no frame drops have 
occurred, a situation that may have a significant impact on control performance. 
During runtime higher priority processes preempt the lower priority ones, delaying its 
execution. This effect is clear in Table 4, with the goal, post and line processes exhibiting a 
much higher variability in their inter-activation times. Therefore, it can be concluded that 
the modular approach is effective, being able to privilege the execution of the processes that 
have higher impact on the global system performance. 

5.3 Dynamic Qos adaptation 

During runtime the robotic soccer players have to perform different roles, e.g., when a 
defender robot gets the ball possession and has a clear way in the direction of the opposite 
team goal it should assume an attacker role and some other team mate should take the 
defender role in its place. The relative importance of the image processing activities depends 
on the particular role that the robots are playing, e.g., in the situation described above the 
robot that is taking the defender role does not need to look for the ball in its vicinity, since 
this one is in the possession of a team mate, while it could benefit from a higher accuracy on 
the localization, achieved by tracking the field lines more often. Therefore, having the ability 
to change the image-processing attributes during runtime has the potential to increase the 
robot performance. 
Another aspect that should not be neglected is that the environment strongly influences the 
image processing time since, depending on its richness, the algorithms may have to explore 
more or less regions of interest. As a result it is possible for the robotic players to perform 
differently in distinct environments or even in different times in the same environment, e.g., 
due to illumination variation. In these cases it may be interesting to manage the execution 
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rates of the image-processing activities in order to take the best possible profit of the CPU 
but without incurring in overloads that penalize the control performance.  
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Figure 9. Inter-activation time of the high-priority frontal (left) and omnidirectional (right) 
avoid processes during a mode change affecting lower priority processes, only 

As discussed in Section 4.2.1, the PMAN library permits to change the QoS properties of the 
processes, namely the period, phase, deadline and priority. To observe the impact of this 
service a situation was created in which the decision level requested a change in the role of a 
robot, from attacker to defender, as described before. Furthermore, a CPU overload was 
detected and thus the need to remove a lower importance process. The resulting actions 
were:
• to remove the ball tracking process in the omni-directional camera;  
• to execute the front camera ball tracking process only once in each two frames;  
• to execute the line tracking process for every frame;  
• to raise its priority to 40, i.e., just below the obstacle avoidance processes. 
Figure 9 and Figure 10 depict the inter-arrival time of the avoid, frontal camera ball-tracking 
and line tracking processes.  
The first fact to be observed is that the higher priority processes are not affected, except for a 
small glitch on the instant of the QoS update, of similar magnitude as the jitter already 
observed (less than 10ms, see Table 4). This glitch may be explained by the need to access 
the PMAN table in exclusive mode and to call the Linux primitive sched_setscheduler()to 
change the priority of the line process. These operations are made within the PMAN_tick 
call, before the activation of the processes. 
The second fact to be observed is that the line and frontal ball-tracking processes started to 
behave as expected immediately after the mode change, with periods of one and two 
frames, respectively. 
The third fact to be observed is that the overload was controlled, and all the processes 
started to behave more regularly. This effect can be observed in medium priority processes 
(e.g. ball tracking) as well as in lower-priority processes (e.g. post seeking). 
Therefore, it can be concluded that the PMAN services permit to change the process 
attributes at run-time, allowing both mode changes and CPU load management without 
disturbing the behavior of other processes not directly involved in the adaptation process 
and, consequently, it is possible to carry out the reconfiguration dynamically, since there is 
no service disruption. 
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Figure 10. Inter-activation time of the frontal ball-tracking (left) and  line (right) processes 
during a mode change in which the period of the former process was increased (50ms to 
100ms) and the period of the latter was reduced (400ms to 50ms) 

6. Conclusion 

Computer vision applied to guidance of autonomous robots has been generating large 
interest in the research community as a natural and rich way to sense the environment and 
extract from it the necessary features. However, due to the robots motion, vision-based 
sensing becomes a real-time activity that must meet deadlines in order to support adequate 
control performance and avoid collisions. Unfortunately, most vision-based systems do not 
rely on real-time techniques and exhibit poor temporal behavior, with large variations in 
execution time that may lead to control performance degradation and even sensing black-
out periods caused by skipped image frames. 
In this chapter, the referred problem is identified in the scope of the CAMBADA middle-size 
robotic soccer team, being developed at the University of Aveiro, Portugal. Then, a new 
architectural solution for the vision subsystem is presented that substantially improves its 
reactivity, reducing jitter and frame skipping. 
The proposed architecture separates the vision-based object-tracking activities in several 
independent processes. This separation allows, transparently and relying solely on 
operative system services, to avoid the blocking of higher priority processes by lower 
priority ones as well as to set independent activation rates, related with the dynamics of the 
objects being tracked and with its impact on the control performance, together with offsets 
that de-phase the activation instants of the processes to further reduce mutual interference. 
As a consequence, it becomes possible to guarantee the execution of critical activities, e.g., 
obstacle avoidance and privilege the execution of others that, although not critical, have 
greater impact on the robot performance, e.g., ball tracking.  
Finally, many robotic applications are deployed in open environments that are hard to 
characterize accurately at pre-runtime. The architecture herein proposed permits managing 
dynamically the resources assigned to tasks, e.g. by controlling their execution rate or 
priority, allowing a dynamic control of the delivered QoS. This approach permits either 
maximizing the utilization of system resources to achieve a best possible QoS for different 
load scenarios or adjusting the resource utilization according to the application 
instantaneous requirements, granting a higher QoS to the tasks that have higher impact on 
the global system performance. 
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The work described in this chapter is focused on robotic soccer robots but the results and 
approach are relevant for a wider class of robotic applications in which the vision subsystem 
is part of their control loop. 
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Extraction of Roads From Out Door Images 

Alejandro Forero Guzmán M.Sc. and Carlos Parra Ph.D. 
Departamento de Ingeniería Electrónica, Pontificia Universidad Javeriana, Bogotá 

Colombia

1. Introduction     

The humanitarian demining process is very slow, expensive and most important, because it 
is done manually, it puts human lives at risk. Deminers are exposed to permanent danger 
and accidents. Even with the help of dogs, the demining process has not improved much 
during recent years (UNICEF, 2000). 

Figure 1. Left side: Ursula Robot. Right side Amaranta Robot Project 

A few separate initiatives from the robotics community to design and prove a mechanical 
automated solution have taken place. Here at the Pontificia Universidad Javeriana, in 
Colombia, we are working in this problem: on a previous project the mobile robot Ursula 
was developed (Rizo et al., 2003); and now we are working in a new mobile robot called 
Amaranta (Figure1). One part of the humanitarian demining problem is the navigation, in 
the two projects the autonomous navigation task is executed based on a vision system that 
uses a camera mounted on the robot.  
Landmines could be placed in any type of terrain: deserts, mountains, swamps, roads, 
forests, etc. This means that when trying to build a robot for demining operations, its 
workspace has to be previously defined and limited. In this work humanitarian demining, is 
limited to operate on places that have been modified by man and that represent great 
importance for a community, for example the roads or paths. Specifically, the systems have 
been designed for the Colombian territory (Rizo et al., 2003). 
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Figure 2. Typical images 
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This chapter presents two approximations made for the vision system in order to enable 
autonomous navigation in outdoor environments; both based on the road following 
principle.
Therefore, almost every vehicle facing the problem of autonomous navigation using vision 
systems solves this problem by following the track. How ever, this technique is widely 
implemented only over structured roads, because painted lines over the road are a reliable 
characteristic to exploit. When there are no painted roads to follow or simply no road at all, 
autonomous navigation based on visual systems, is usually reduced to avoid obstacles. 
In the last two decades, autonomous navigations have been a goal sought by different 
authors (Turk et al., 1988) (Thorpe et al., 1988), yet today still an open area for research 
(Thrun et al.,2006).  
Due to the danger involved in demining efforts, a cheap robot is required, equipped with an 
autonomous navigation system, in order to minimize the risk for the humanitarian 
demining team; and an architecture capable of supporting multiple sensors to acquire the 
most reliable information about the surrounding area. These limitations, along with the 
special terrain conditions of the Colombia topography guide the present research. 
Bellow some concepts from the classic theory are presented and then the complete approach 
made by the authors is exposed, from the problem of navigation to the extraction of roads or 
paths in outdoor images as essential part of the autonomous navigation. 

2. Important Concepts 

2.1 Colour Spaces

In general, colour is the perceptual result of light in the visible region of the spectrum (Jain, 
1989). There are many colour spaces reported in the literature, each one has its 
characteristics. For image processing, its is usually described by the distribution of the 
colour of the three components R (Red), G  (Green) and B (Blue), moreover many other 
attributes can also be calculated from these components. The colour analysis is more 
difficult using the three components. In image processing of exterior scenes, the illumination 
is a very critical parameter. A first approach is to select a colour space expressed as two 
colour components and one intensity/luminance component (Ohta, HIS, LUV, L*a*b*) 
(Aviña-Cervantes, 2005) 
For example, the CIE L*a*b* colour space was presented by the International Commission of 
Illumination. The model was based on two properties of an older colour space called CIE 
XYZ. The first of these properties is that the standard was created from the frequency 
response of several patients’ eyes, making the system independent from electronic devices. 
The second property, taken from CIEXYZ, is that the mathematical representation of the 
space allows separating the luminance from the chrominance. 
On the other hand, the originality of this colour space is that it introduces the concept of 
perceptual uniformity. It means that if two colours are similar to each other, in CIE L*a*b* 
they are close and this distance is measured by the Euclidean metric. In the CIE L*a*b* space 
L* represents the luminance, a* codifies the reddish and greenish sensation, while b* codifies 
the yellowish and bluish sensation.   
The space transformation from RGB to L*a*b* has two steps. The first one is a linear 
transformation from RG to CIE XYZ (Eq. 1). 
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The second transformation is a non-linear transformation from CIE XYZ to CIE L*a*b* (Eq. 
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The nnn ZYX ,, values are the tri stimuli related with the white point. In some cases it can be 
measured, but there are also standards according to the light conditions. In this case, due to 
the weather conditions at the capturing moment, the CIE D65 (lightening day) (Eq.3), 
standard is normally selected (Broek & Rikxoort, 2004). 

0884.119502.0 === nnn ZYX (3)

This method is not simple for computer implementation. The non-linear transformation 
takes important time of processing. 
A second approach takes the relationship between the components of RGB. For example: 
R/G and B/G.  This approach is also applied over the colour space YCbCr. The colour space 
YCbCr is used in video systems. Y is the brightness component and Cb and Cr are the blue 
and red chrominance components. 

2.2 Semantic Model

This is an abstract representation; it gives a label, corresponding to a class, to each entity 
found in the scene (i.e. sky, road, tree, etc.) (Murrieta-Cid et al., 2002). In the semantic 
model, the classification is based on a priori knowledge given to the system (Fan et al., 
2001).   
This knowledge consists in: 
A list of possible classes that the robot identifies in the environment.  
Learning attributes for each class. The region characterization is developed by using several 
attributes computed from the colour information. Other attributes are texture and 
geometrical information. 
The kind of environment to be analyzed; the nature of the region is obtained by comparing a 
vector of features with a database composed of different classed, issues of the learning 
process. The database is a function of the environment and problem restrictions. 
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3. General System 

The approach used to solve the problem of navigation presented here is very similar to the 
one used with structured roads: find a path and then follow it (Bertozzi et al., 2002) (Aviña-
Cervantes et al., 2003). Once the road or path has been identified, following it supposes a 
known problem in robotics. For this reason, the focus of this exposition is centered on the 
identification of the area that represents the path the robot will follow, and the extraction of 
some parameters necessary for the control stage.  
Figure 2 shows the kind of images processed by the system. In all of these images there are 
certain characteristics in common: a set of pixels, mostly connected, represent the road; in a 
close range image (5 to 25 meters) it is highly probable to have only one road; a road that 
can be followed goes from the bottom of the picture till some point in the middle upper area 
of the picture.  
Along with these ideas, other facts are implicit: the picture is taken horizontal to the ground, 
the sky is in the upper portion of the picture, there is sufficient light to distinguish the road 
or path, there are not objects obstructing the view of the road. All of these assumptions are 
easily fulfilled in real conditions. Every one of these characteristics is used as semantic 
information and helps to delimit the scope of the problem. The processing of the images is 
done to exploit all the semantic characteristics mentioned before. At the end, semantic rules 
are applied to extract the essential information in the image: the route over the navigable 
terrain.

Figure 3. Semantic characteristic in the image 

3.1 Extraction of characteristics

Different approaches have been made to extract the path or road in outdoor images, colour 
segmentation is one of those, but this technique is very susceptible to changes in 
illumination, a big draw back in outdoor vision systems. 
To overcome this difficulty many approximations have been presented by numerous 
authors (Turk et al., 1988) (Thorpe et al., 1988), but some times they are to complex to be 
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implemented in a cheap system. Instead, we propose the use of semantic information, 
similar to the one we use as humans to follow a path, to reduce the complexity of the colour 
segmentation by using the possible meanings of the different characteristics found in the 
image and its relation with the context, hence reducing the universe of possibilities. 

3.2 Semantic information 

As the camera is upward and horizontal to the ground the representation of a typical image 
consists of the sky, above the horizon; and the segment below the horizon contains 
maximum two areas: path and not path regions. Figure 3 shows the typical target image and 
the principal semantic characteristic in it: sky, in the blue rectangle; horizon, the brown line; 
and road inside the red segment. 

Figure 4. Examples of path visualization in differents color spaces 

This simple representation reduces the complexity in the colour segmentation and enables 
the use of a wider space to separate the two regions below the horizon, what in time, 
reduces the negative effect of variable shadows and changes of illumination over the 
objective path. 
In addition, the binary classes enable the use of techniques as simple as binarization to make 
the segmentation: only two classes below the horizon.  Herewith the computation problem 
is reduced; as a result the computational resources can be reduced without increasing the 
time that the process consumes (Duda et al., 2001). 
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4. Algorithms

Two approximations were made to solve the problem; both of them use some colour 
segmentation along with semantic information. The first algorithm, which works in the RGB 
space, is the initial design (Forero & Parra, 2004). It was tested in Matlab® and designed to 
work along with the first implementation of the robot Ursula.  
The second algorithm was conceived to work in an embedded system and it captures the 
image in the YCbCr colour space. In figure 4, for pictures show the image in different colour 
spaces. Next, both algorithms are explained in more detail. 

Figure 5. From top to bottom, left to right: original image RGB, R-B plane, inverse R-B, 
image result from a median filter, image result from the first morphological filter, image 
thicken, image result from the second morphological filter, image segmented by 
connectivity, path selected 

Figure 6. Flow diagram for the RGB implementation 
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4.1 RGB implementation 

This algorithm works in 2 of the three components of the RGB space, the channels red and 
blue. Chanel blue is used to segment the sky and the projection R B is used in the rest of 
the process. Channel green is not used because it has few or not information about the path. 
After the sky is identified, it is subtracted from the rest of the image, so the projection R B
does not contain the segment levelled as sky. This special projection R B, with constants 

 and  set to 0,5, is used because in it the dirt of the paths is enhanced and the effect of 
shadows is reduced (Turk et al., 1988). 
The new image, the projection R B, is subject to a threshold operation to obtain two classes 
in it; this is the first approximation to the road and not road classes. The threshold is 
selected using the Otsu Method (Otsu, 1979) so the separability of the two classes is 
maximized. Then, morphological filters are applied to reduce holes and increase the 
connectivity in the biggest region of this image.  
After filtering, one of the biggest connected regions in the image should be the road. If more 
than one region has the characteristics the algorithm is looking for, the semantic rules 
should help to choose one: centroid, major axis length, minor axis length and orientation of 
the areas that contains each region are extracted and then the rules are applied to select one 
as the final path. 
Figure 5 illustrates the different stages of the algorithm, and figure 6 illustrates the 
algorithm with a flow diagram.

4.2 YCbCr implementation 

Figure 7. Flow diagram for the YCbCr implementation 

This algorithm was developed after the RGB implementation (Maldonado et al., 2006), 
thinking of the online application; it takes the three channels of the space YCbCr, and uses 
each one as 256 level images. The dimension in all channels is reduced, so the portion of the 
sky is taken out.  This reduction in the image is done by a geometric calculation, and if some 
pixels from the ground are also lost, they would be the far away pixels close to the horizon; 
this is not a problem because in future images the problem will be corrected, before the 
robot reaches that point. 
Afterward, a threshold is applied to each channel, following the same idea used in the RGB 
implementation; then all the information in the three components its put together with an 
AND operator. This way the information is merging by adding the coincident pixels and 
extracting those who only represent a hit in one or two channels.  
Finally, the result image is filtered to reduce the effect of noise and obtain a single path. A 
median filter with a 5 x 5 window is used for this purpose.  
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After one region is selected as the path, his centroid along with the direction of the path are 
extracted. This enables the control system to plan the path and overtake autonomous 
navigation. Figure 7 illustrates the algorithm with a flow diagram, and figure 8 illustrates 
the different stages of the algorithm. 

Figure 8. Real Time System Processing 

5. Hardware realization

The algorithm was tested in Matlab®, and then implemented in a high-level language, C++ 
with the Intel’s library OpenCV®. These steps were to help develop and analyse the 
algorithm. After concluding this stage, the complete process was implemented in embedded 
systems to achieve portability along with real time processing. Here after, the 
implementation in OpenCV® and the implementation in the Blackfin® Processors are 
explained with more detail.  
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5.1 OpenCV® implementation 

The implementation in OpenCV® was done in a PC with Fedora Linux operative system, 
where the algorithm was programmed in C/C++. The Intel’s compiler used came along 
with the OpenCV library. The final application takes as input an image in AVI (Audio Video 
Interleave) format and then executes the recognition algorithm, previously tested in 
Matlab®. The objective of using C++ to program the concluding version was to facilitate the 
migration of the application into the embedded version in the DSP EZKIT- LITE BF533 
Blackfin®.

5.2 Blackfin® implementation 

Figure 9. Real Time System Processing 

To accomplish real time processing, as shown in figure 9, the DSP EZKIT- LITE BF533 
Blackfin® was used. Three special functions were implemented to bring about the operation 
in the desire hardware: 
Initialization, the Blackfin BF 533 processor and the developed card ADSP EZKIT – LITE 
BF533 are prepared to capture video and generate the interrupt and synchronism signals 
with the peripheries: a video decoder ADV7183 and a the embedded DMA. The first one 
transforms the analog video NTSC into digital video ITU-656, and the processor’s DMA 
transfers the video information into the RAM memory in the developed card. 
The processing stage starts with the extraction of each channel YCbCr from the image in 
memory. Them, it calls all procedures that execute the algorithm: Contrast estimation, 
histogram calculation, threshold calculation, and adding the three channels. Finally, it 
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calculates the moments of the region of interest to extract the centroid and the orientation of 
the path. 
In the last step, Transmission, the information concerning the path (centroid and the 
orientation) is transmitted by a RS-232 serial interface to a navigation module.  
Besides these functions, other considerations had to be taken to run the algorithm in the 
embedded system:   
New data types were created in C++ in order to be compatible with ADSP EZKIT- LITE 
BF533. These data structures manage the information in the image and handle all the 
parameters that the algorithm uses. 
All the variables are defined according with the size and physical position that each one will 
take in the physical memory in the development kit. This execution allows a better use of 
the hardware resource and enables simultaneous processing of two images, one image is 
acquired by the DMA, and other is processed in the CPU. 
Finally, The Blackfin’s ALU only handles fixed-point values, so floating-point values have to 
be avoided in order to maintain the performance of the whole system. 

6. Conclusion 

Even when there has been an extensive development of works on road detection and road 
following during the last two decades, most of them are focused on well structured roads, 
making difficult its use for humanitarian demining activities. The present work shows a way 
to use the natural information in outdoor environment to extract the roads or paths 
characteristics, which can be used as landmarks for the navigation process. 
Other important observation is that the information combines of two colors, (i.e. the 
projection R  B, Cb or Cr channels) hence reducing the harmful effect of the changing 
illumination in natural environment.   
Good results were also achieved in the path planning process. The robot executes a 2½ D 
trajectory planning, which facilitates the work of the vision system because only the close 
range segmentation has to be correct to be successful in the path planning. 
With regard to the semantic information, the results show how semantic characteristics 
make possible the use of low-level operations to extract the information required without 
spending too many time and hardware resources. 
Finally, the system implemented is part of a visual exploration strategy which is being 
implemented in the robot Amaranta, and has other visual perception functions like the 
detection of buried objects by color and texture analysis. When the whole system will be 
functional it will integrate techniques of control visual navigation and would be a great tool 
to test how all the system can work together (Coronado et al., 2005). 
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1. Introduction  

The railway maintenance is a particular application context in which the periodical surface 
inspection of the rolling plane is required in order to prevent any dangerous situation. 
Usually, this task is performed by trained personnel that, periodically, walks along the 
railway network searching for visual anomalies. Actually, this manual inspection is slow, 
laborious and potentially hazardous, and the results are strictly dependent on the capability 
of the observer to detect possible anomalies and to recognize critical situations.  
With the growing of the high-speed railway traffic, companies over the world are interested 
to develop automatic inspection systems which are able to detect rail defects, sleepers’ 
anomalies, as well as missing fastening elements. These systems could increase the ability in 
the detection of defects and reduce the inspection time in order to guarantee more 
frequently the maintenance of the railway network.  
This book chapter presents ViSyR: a patented fully automatic and configurable FPGA-based 
vision system for real-time infrastructure inspection, able to analyze defects of the rails and 
to detect the presence/absence of the fastening bolts that fix the rails to the sleepers.  
Besides its accuracy, ViSyR achieves impressive performance in terms of inspection velocity. 
In fact, it is able to perform inspections approximately at velocities of 450 km/h (Jump 
search) and of 5 km/h (Exhaustive search), with a composite velocity higher than 160 km/h 
for typical video sequences. Jump and Exhaustive searches are two different modalities of 
inspection, which are performed in different situations. This computing power has been 
possible thanks to the implementation onto FPGAs. ViSyR is not only affordable, but even 
highly flexible and configurable, being based on classifiers that can be easily reconfigured in 
function of different type of rails. 
More in detail, ViSyR's functionality can be described by three blocks: Rail Detection & 
Tracking Block (RDT&B), Bolts Detection Block (BDB) and Defects Analysis Block (DAB).  
• RD&TB is devoted to detect and track the rail head in the acquired video. So doing it 

strongly reduces the windows to be effectively inspected by the other blocks. It is based 
on the Principal Component Analysis and the Single Value Decomposition. This 
technique allows the detection of the coordinates of the center of the rail analyzing a 
single row of the acquired video sequence (and not a rectangular window having more 
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rows) in order to keep extremely low the time for I/O. Nevertheless, it allows an 
accuracy of 98.5%.  

• BDB, thanks to the knowledge of the rail geometry, analyses only those windows 
candidate to contain the fastening elements. It classifies them in the sense of 
presence/absence of the bolts. This classification is performed combining in a logical 
AND two classifiers based on different preprocessing. This “cross validated” response 
avoids (practically-at-all) false positive, and reveals the presence/absence of the 
fastening bolts with an accuracy of 99.6% in detecting visible bolts and of 95% in 
detecting missing bolts. The cases of two different kinds of fastening elements (hook 
bolts and hexagonal bolts) have been implemented.  

• DAB focuses its analysis on a particular class of surface defects of the rail: the so-called 
rail corrugation, that causes an undulated shape into the head of the rail. To detect (and 
replace) corrugated rails is a main topic in railways maintenance, since in high-speed 
train, they induce harmful vibrations on wheel and on its components, reducing their 
lifetime. DAB mainly realizes a texture analysis. In particular, it derives as significant 
attributes (features) mean and variance of four different Gabor Filter responses, and 
classifies them using a Support Vector Machine (SVM) getting 100% reliability in 
detecting corrugated rails, as measured in a very large validation set. The choice of 
Gabor Filter is derived from a comparative study about several approaches to texture 
feature extraction (Gabor Filters, Wavelet Transforms and Gabor Wavelet Transforms). 

Details on the artificial vision techniques basing the employed algorithms, on the parallel 
architectures implementing RD&TB and BDB, as well as on the experiments and test 
performed in order to define and tune the design of ViSyR are presented in this chapter. 
Several Appendixes are finally enclosed, which shortly recall theoretical issues recalled 
during the chapter. 

2. System Overview  

ViSyR acquires images of the rail by means of a DALSA PIRANHA 2 line scan camera 
[Matrox] having 1024 pixels of resolution (maximum line rate of 67 kLine/s) and using the 
Cameralink protocol [MachineVision]. Furthermore, it is provided with a PC-CAMLINK 
frame grabber (Imaging Technology CORECO) [Coreco]. In order to reduce the effects of 
variable natural lighting conditions, an appropriate illumination setup equipped with six 
OSRAM 41850 FL light sources has been installed too. In this way the system is robust 
against changes in the natural illumination. Moreover, in order to synchronize data 
acquisition, the line scan camera is triggered by the wheel encoder. This trigger sets the 
resolution along y (main motion direction) at 3 mm, independently from the train velocity; 
the pixel resolution along the orthogonal direction x is 1 mm. The acquisition system is 
installed under a diagnostic train during its maintenance route. A top-level logical scheme 
of ViSyR is represented in Figure 1, while Figure 2 reports the hardware and a screenshot of 
ViSyR's monitor. 
A long video sequence captured by the acquisition system is fed into Prediction Algorithm 
Block (PAB), which receives a feedback from BDB, as well as the coordinates of the railways 
geometry by RD&TB. PAB exploits this knowledge for extracting 24x100 pixel windows 
where the presence of a bolt is expected (some examples are shown in Figure 3).  
These windows are provided to the 2-D DWT Preprocessing Block (DWTPB). DWTPB 
reduces these windows into two sets of 150 coefficients (i.e., D_LL2 and H_LL2), resulting 
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respectively from a Daubechies DWT (DDWT) and a Haar DWT (HDWT). D_LL2 and H_LL2

are therefore provided respectively to the Daubechies Classifier (DC) and to the Haar 
Classifier (HC). The output from DC and HC are combined in a logical AND in order to 
produce the output of MLPN Classification Block (MLPNCB). MLPNC reveals the 
presence/absence of bolts and produces a Pass/Alarm signal that is online displayed (see 
the squares in Figure 2.b), and -in case of alarm, i.e. absence of the bolts- recorded with the 
position into a log file. 
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Figure 1. ViSyR's Functional diagram. Rounded blocks are implemented in a FPGA-based 
hardware, rectangular blocks are currently implemented in a software tool on a general 
purpose host 

RD&TB employs PCA followed by a Multilayer Perceptron Network Classification Block 
(MLPNCB) for computing the coordinates of the center of the rail. More in detail, a 
Sampling Block (SB) extracts a row of 800 pixels from the acquired video sequence and 
provides it to the PCA Block (PCAB). Firstly, a vector of 400 pixels, extracted from the above 
row and centered on xc (i.e., the coordinate of the last detected center of the rail head) is 
multiplied by 12 different eigenvectors. These products generate 12 coefficients, which are 
fed into MLPNCB, which reveals if the processed segment is centered on the rail head. In 
that case, the value of xc is updated with the coordinate of the center of the processed 400-
pixels vector and online displayed (see the cross in Figure 2.b). Else, MLPNCB sends a 
feedback to PCAB, which iterates the process on another 400-pixels vector further extracted 
from the 800-pixel row.
The detected values of xc are also fed back to various modules of the system, such as SB, 
which uses them in order to extract from the video sequence some windows of 400x128 
pixels centered on the rail to be inspected by the Defect Analysis Block (DAB): DAB 
convolves these windows by four Gabor filters at four different orientations (Gabor Filters 
Block). Afterwards, it determines mean and variance of the obtained filter responses and 
uses them as features input to the SVM Classifier Block which produces the final report 
about the status of the rail. 
BDB and RD&TB are implemented in hardware on an a Xilinx Virtex IITM Pro XC2VP20 
(embedded into a Dalsa Coreco Anaconda-CL_1 Board) and on an Altera StratixTM EP1S60 
(embedded into an Altera PCI-High Speed Development Board - Stratix Professional 
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Edition) FPGAs, respectively. SB, PAB and DAB are software tools developed in MS Visual 
C++ 6.0 on a Work Station equipped with an AMD Opteron 250 CPU at 2.4 GHz and 4 GB 
RAM.

(a)

(b)
Figure 2. ViSyR: (a) hardware and (b) screenshot 

Figure 3. Examples of 24x100 windows extracted from the video sequence containing 
hexagonal headed bolts. Resolutions along x and y are different because of the acquisition 
setup 
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3. Rail Detection & Tracking 

RD&TB is a strategic core of ViSyR, since "to detect the coordinates of the rail" is 
fundamental in order to reduce the areas to be analyzed during the inspection. A rail 
tracking system should consider that:  
• the rail may appear in different forms (UIC 50, UIC 60 and so on);  
• the rail illumination might change; 
• the defects of the rail surface might modify the rai geometry;  
• in presence of switches, the system should correctly follow the principal rail. 
In order to satisfy all of the above requirements, we have derived and tested different 
approaches, respectively based on Correlation, on Gradient based neural network, on 
Principal Component Analysis (PCA, see Appendix A) with threshold and a PCA with 
neural network classifier. 
Briefly, these methods extract a window ("patch") from the video sequence and decide if it is 
centred or not on the rail head. In case the "patch" appears as "centred on the rail head", its 
median coordinate x is assigned to the coordinate of the centre of the rail xc, otherwise, the 
processing is iterated on a new patch, which is obtained shifting along x the former "patch". 
Even having a high computational cost, PCA with neural network classifier outperformed 
other methods in terms of reliability. It is worth to note that ViSyR’s design, based on a 
FPGA implementation, makes affordable the computational cost required by this approach. 
Moreover, we have experienced that PCA with neural network classifier is the only method 
able to correctly perform its decision using as "patches" windows constituted by a single 
row of pixels. This circumstance is remarkable, since it makes the method strongly less 
dependent than the others from the I/O bandwidth. Consequently, we have embedded into 
ViSyR a rail tracking algorithm based on PCA with MLPN classifier. This algorithm consists 
of two steps:  
• a data reduction phase based on PCA, in which the intensities are mapped into a 

reduced suitable space (Component Space); 
• a neural network-based supervised classification phase, for detecting the rail in the 

Component Space. 

3.1 Data Reduction Phase. 

Due to the setup of ViSyR's acquisition, the linescan TV camera digitises lines of 1024 pixels. 
In order to detect the centre of the rail head, we discarded the border pixels, considering 
rows of only 800 pixels. In the set-up employed during our experiments, rail having widths 
up to 400 pixels have been encompassed. 
Matrices A and C were derived according to equations (A.1) and (A.4) in Appendix A, using 
450 examples of vectors. We have selected L=12 for our purposes, after having verified that 
a component space of 12 eigenvectors and eigenvalues was sufficient to represent the 91% of 
information content of the input data. 

3.2 Classification Phase 

The rail detection stage consists of classifying the vector a’ -determined as shown in (A.8)- in 
order to discriminate if it derives from a vector r’ centred or not on the rail head. We have 
implemented this classification step using a Multi Layer Perceptron Neural (MLPN) 
Network Classifier, since: 
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• neural network classifiers have a key advantage over geometry-based techniques 
because they do not require a geometric model for the object representation [A. Jain et 
al. (2000)]; 

• contrarily to the id-tree, neural networks have a topology very suitable for hardware 
implementation.

Inside neural classifiers, we have chosen the MLP, after having experimented that they are 
more precise than their counterpart RBF in the considered application, and we have adopted 
a 12:8:1 MLPN constituted by three layers of neurons (input, hidden and output layer), 
respectively with 12 neurons n1,m (m=0..11) corresponding to the coefficients of a’ derived by  
r’ according to (A.7); 8 neurons n2,k (k=0..7): 
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and a unique neuron n3,0 at the output layer (indicating a measure of confidence on the fact 
that the analyzed vector r’ is centered or not on the rail head): 
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In (1) and (2), the adopted activation function f(x), having range ]0, 1[, has been: 
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while the weights w1,m,k and w2,k,0 have been solved using the Error Back Propagation 
algorithm with an adaptive learning rate [Bishop. (1995)] and a training set of more than 800 
samples (see Paragraph 7.3). 

3.3 Rail Detection and Tracking Algorithm  

The Rail Detection and Tracking Algorithm consists of determining which extracted vector 
r’ is centred on the rail.  
Instead of setting the classifier using a high threshold at the last level and halting the 
research as soon as a vector is classified as centred on the rail ("rail vector"), we have 
verified that better precision can be reached using a different approach.  
We have chosen a relatively low threshold (=0.7). This threshold classifies as "rail vector" a 
relatively wide set of vectors r’, even when these ones are not effectively centred on the rail 
(though they contain it). By this way, in this approach, we halt the process not as soon as the 
first "rail vector" has been detected, but when, after having detected a certain number of 
contiguous "rail vectors", the classification detects a "no rail". At this point we select as true 
"rail vector" the median of this contiguous set. In other words, we accept as "rail vector" a 
relatively wide interval of contiguous vectors, and then select as xC the median of such 
interval.
In order to speed-up the search process, we analyse each row of the image, starting from a 
vector r’ centered on the last detected coordinate of the rail centre xC. This analysis is 
performed moving on left and on right with respect to this origin and classifying the 
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vectors, until the begin (xB) and the end (xE) of the "rail vectors" interval are detected. The 
algorithm is proposed in Figure 4. 

xC = 512;       // presetting of the coordinate of the centre of the rail 
do Start image sequence to End image sequence;
    set r’ (400-pixel row) centered on xC;
    do:
        determine a’ (12 coefficients) from r’
        input a’ to the classifier and classify r’  
        set the new r’ shifting 1-pixel-left the previous r’ 
    while(r' is classified as rail) 
// exit from do-while means you have got the begin of the "rail vectors" interval 
    xB = median coordinate of r’;      
    r’ (400-pixel row) centred on xC;
    do:
        determine a’ (12 coefficients) from r’
        input a’ to the classifier and classify r’ 
        set the new r’ shifting 1-pixel-right the previous r’
    while(r' is classified as rail) 
// exit from do-while means you have got the end of the "rail vectors" interval 
    xE = median coordinate of r’;      
    output xC = (xB+xE)/2;
end do

Figure 4. Algorithm for searching the rail center coordinates 

4. Bolts Detection 

Usually two kinds of fastening elements are used to secure the rail to the sleepers: 
hexagonal-headed bolts and hook bolts. They essentially differ by shape: the first one has a 
regular hexagonal shape having random orientation, the second one has a more complex 
hook shape that can be found oriented only in one direction.  
In this paragraph the case of hexagonal headed bolts is discussed. 
It is worth to note that they present more difficulties than those of more complex shapes 
(e.g., hook bolts) because of the similarity of the hexagonal bolts with the shape of the stones 
that are on the background. Nevertheless, detection of hook bolts is demanded in Paragraph 
7.6.
Even if some works have been performed, which deal with railway problems -such as track 
profile measurement (e.g., [Alippi et al. (2000)]), obstruction detection (e.g., [Sato et al.
(1998)]), braking control (e.g., [Xishi et al. (1992)]), rail defect recognition (e.g., [Cybernetix 
Group], [Benntec Systemtechnik Gmbh]), ballast reconstruction (e.g., [Cybernetix Group]), 
switches status detection (e.g., [Rubaai (2003)]), control and activation of signals near 
stations (e.g., [Yinghua (1994)), etc.- at the best of our knowledge, in literature there are no 
references on the specific problem of fastening elements recognition. The only found 
approaches, are commercial vision systems [Cybernetix Group], which consider only 
fastening elements having regular geometrical shape (like hexagonal bolts) and use 
geometrical approaches to pattern recognition to resolve the problem. Moreover, these 
systems are strongly interactive. In fact, in order to reach the best performances, they 
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require a human operator for tuning any threshold. When a different fastening element is 
considered, the tuning phase has to be re-executed. 
Contrariwise, ViSyR is completely automatic and needs no tuning phase. The human 
operator has only the task of selecting images of the fastening elements to manage. No 
assumption about the shape of the fastening elements is required, since the method is 
suitable for both geometric and generic shapes.  

ViSyR’s bolts detection is based on MLPNCs and consists of:
• a prediction phase for identifying the image areas (windows) candidate to contain the 

patterns to be detected; 
• a data reduction phase based on DWT; 
• a neural network-based supervised classification phase, which reveals the 

presence/absence of the bolts. 

4.1 Prediction Phase  

To predict the image areas that eventually may contain the bolts, ViSyR calculates the 
distance between two adjacent bolts and, basing to this information, predicts the position of 
the windows in which the presence of the bolt should be expected. 
Because of the rail structure (see Figure 5), the distance Dx between rail and fastening bolts 
is constant -with a good approximation- and a priori known.  
By this way, the RD&TB's task, i.e., the automatic railway detection and tracking is 
fundamental in determining the position of the bolts along the x direction. In the second 
instance PAB forecasts the position of the bolts along the y direction. To reach this goal, it 
uses two kinds of search:  
• Exhaustive search; 
• Jump search. 

Dy

Dx Dx

Left  
Bolts Right  

Bolts

Figure 5. Geometry of a rail. A correct expectation for Dx and Dy notably reduces the 
computational load 

In the first kind of search, a window exhaustively slides on the areas at a (well-known) 
distance Dx from the rail-head coordinate (as detected by RD&TB) until it finds 
contemporaneously (at the same y) the first occurrence of the left and of the right bolts. At 
this point, it determines and stores this position (A) and continues in this way until it finds 
the second occurrence of both the bolts (position B). Now, it calculates the distance along y
between B and A (Dy) and the process switches on the Jump search. In fact, the distance 
along y between two adjacent sleepers is constant ad known. Therefore, the Jump search 
uses Dy to jump only in those areas candidate to enclose the windows containing the 
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hexagonal-headed bolts, saving computational time and speeding-up the performance of the 
whole system. If, during the Jump search, ViSyR does not find the bolts in the position 
where it expects them, then it stores the position of fault (this is cause of alarm) in a log-file 
and restarts the Exhaustive search. A pseudo-code describing how Exhaustive search and 
Jump search commutate is shown in Figure 6. 

do Start image sequence to End image sequence;
  repeat
    Exhaustive search;
    if found first left and right bolt store this position (A);
  until found second left and right bolt;
  store this position (B);
  determine the distance along y between B and A;
  repeat 
    Jump search
  until the bolts are detected where they were expected;
end do

Figure 6. Pseudo code for the Exhaustive search - Jump search commutation 

4.2 Data Reduction Phase  

For reducing the input space size, ViSyR uses a features extraction algorithm that is able to 
preserve all the important information about input patterns in a small set of coefficients. 
This algorithm is based on 2-D DWTs [Daubechies (1988), Mallat (1989), Daubechies (1990 
a), Antonini et al. (1992)], since DWT concentrates the significant variations of input patterns 
in a reduced number of coefficients. Specifically, both a compact wavelet introduced by 
Daubechies [Daubechies (1988)], and the Haar DWT (also known as Haar Transform [G. 
Strang, & T. Nuguyen (1996)]) are simultaneously used, since we have verified that, for our 
specific application, the logical AND of these two approaches avoids -almost completely- 
the false positive detection (see Paragraph 7.5). 
In pattern recognition, input images are generally pre-processed in order to extract their 
intrinsic features. We have found [Stella et al. (2002), Mazzeo et al. (2004)] that orthonormal 
bases of compactly supported wavelets introduced by Daubechies [Daubechies (1988)] are 
an excellent tool for characterizing hexagonal-headed bolts by means of a small number of 
features1 containing the most discriminating information, gaining in computational time. As 
an example, Figure 7 shows how two decomposition levels are applied on an image of a 
bolt.

LL2

HL2

LH2

HH2 LH1

HL1 HH1

Figure 7. Application of two levels of 2-D DWT on a subimage containing an hexagonal-
headed bolt 
                                                                
1 These are the coefficients of the LL subband of a given decomposition level l; l depending on the image 
resolution and equal to 2 in the case of VISyR's set-up. 
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Due to the setup of ViSyR’s acquisition, PAB provides DWTPB with windows of 24x100 
pixels to be examined (Figure 3). Different DWTs have been experimented varying the 
number of decomposition levels, in order to reduce this number without losing in accuracy. 
The best compromise has been reached by the LL2 subband consisting only of 6x25 
coefficients. Therefore, BDB has been devoted to compute the LL2 subbands both of a Haar 
DWT [G. Strang, & T. Nuguyen (1996)] and of a Daubechies DWT, since we have found that 
the cross validation of two classifiers (processing respectively D_LL2 and H_LL2, i.e., the 
output of DDWT and HDWT, see Figure 1) practically avoids false positive detection (see 
Paragraph 7.5). BDB, using the classification strategy described in the following Paragraph, 
gets an accuracy of 99.9% in recognizing bolts in the primitive windows.  

4.3 Classification Phase  

ViSyR’s BDB employs two MLPNCs (DC and HC in Figure 1), trained respectively for 
DDWT and HDWT. DC and HC have an identical three-layers topology 150:10:1 (they differ 
only for the values of the weights). In the following, DC is described; the functionalities of 
HC can be straightforwardly derived.
The input layer is composed by 150 neurons '_ mnD  (m=0..149) corresponding to the 
coefficients D_LL2(i, j) of the subband D_LL2 according to: 

( )25mod,25/_ 2
' mmnD m D_LL=  (4) 

The hidden layer of DC consists of 10 neurons ''_ knD  (k=0..9); they derive from the 
propagation of the first layer according to: 
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whilst the unique neuron '''

0_ nD  at the output layer is given by: 
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4where '
,_ kmwD  and ''

0,_ kwD  are the weights respectively between first/second and 

second/third layers. The activation function ( )xf  is the same as (3). 

In this scenario, '''

0_ nD  ranges from 0 to 1 and indicates a measure of confidence on the 
presence of the object to detect in the current image window, according to DC.  
The outputs from DC and HC ( '''

0_ nD  and '''

0_ nH ) are combined as follows: 

( ) ( )9.0_9.0_Presence '''
0

'''
0 >>= nHANDnD (7)

in order to produce the final output of the Classifier. 
The biases and the weights were solved using the Error Back Propagation algorithm with an 
adaptive learning rate [Bishop (1995)] and a training set of more than 1,000 samples (see 
Paragraph 7.3).
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5. Defects Analysis Block 

The Defects Analysis Block, at the present, is able to detect a particular class of surface 
defects on the rail, the so-called rail corrugation. As it is shown in some examples of Figure 
8.b, this kind of defect presents a textured surface. 

      
 (a)  (b) 

Figure 8. (a) Examples of rail head; (b) Examples of rail head affected by corrugation 

A wide variety of texture analysis methods based on local spatial pattern of intensity have 
been proposed in literature [Bovik et al. (1990), Daubechies (1990 b)]. Most signal processing 
approaches submit textured image to a filter bank model followed by some energy 
measures. In this context, we have tested three filtering approaches to texture feature 
extraction that in artificial vision community have already provided excellent results [Gong 
et al. (2001), Jain et al. (2000)] (Gabor Filters, Wavelet Transform and Gabor Wavelet 
Transform), and classified the extracted features by means both of a k-nearest neighbor 
classifier and of a SVM, in order to detect the best combination "feature 
extractor"/"classifier".  
DAB is currently a "work in progress". Further steps could deal with the analysis of other 
defects (e.g., cracking, welding, shelling ,blob, spot etc.). Study of these defects is already in 
progress, mainly exploiting the fact that some of them (as cracking, welding, shelling) 
present a privileged orientation. Final step will be the hardware implementation even of 
DAB onto FPGA. 

5.1 Feature Extraction  

For our experiments we have used a training set of 400 rail images of 400x128 pixels 
centered on the rail-head, containing both “corrugated” and "good" rails, and explored three 
different approaches, which are theoretically shortly recalled in Appendixes B, C and D. 
Gabor Filters. In our applicative context, we have considered only circularly symmetric 
Gaussians (i.e., σσσ == yx

), adopting a scheme which is similar to the texture 

segmentation approach suggested in [Jain & Farrokhnia (1990)], approximating the 
characteristics of certain cells in the visual cortex of some mammals [Porat & Zeevi (1988)].  
We have submitted the input image to a filter Gabor bank with orientation 0, π/4, π/2 and 
3π/4 (see Figure 9), σ=2 and radial discrete frequency F= 322  to each example of the 
training set. We have discarded other frequencies since they were found too low or too high 
for discriminating the texture of our applicative context. 
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a b 

c d 

Figure 9. Gabor Filters at different orientations: (a) 0; (b) π/4; (c) π/2; (d) 3π/4

The resulting images ( )yxi ,θ  (see Figure 10) represent the convolution of the input image 

( )yxi , with the Gabor filters ),( yxhθ  where sub index θ indicates the orientation: 

( ) ( ) ( )yxiyxhyxi ,,, ∗= θθ (8)

Figure 10. Examples of Gabor Filters (F= 322 , σ=2) applied to a corrugated image 

Wavelet Transform. We have applied a “Daubechies 1” or “haar” Discrete Wavelet 
transform to our data set, and we have verified that, for the employed resolution, more than 
three decomposition levels will have not provided additional discrimination.  
Figure 11 shows how three decomposition levels are applied on an image of a corrugated 
rail.
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Figure 11. Example of “Daubechies 1” Discrete Wavelet transform (three decomposition 
levels) of the corrugated image 

Gabor Wavelet Transform. A lot of evidence exists for the assumption that representation 
based on the outputs of families of Gabor filters at multiple spatial locations, play an 
important role in texture analysis. In [Ma & Manjunath (1995)] is evaluated the texture 
image annotation by comparison of various wavelet transform representation, including 
Gabor Wavelet Transform (GWT), and found out that, the last one provides the best match 
of the first stage of visual processing of humans. Therefore, we have evaluated Gabor 
Wavelet Transform also because it resumes the intrinsic characteristics both Gabor filters 
and Wavelet transform. 

.

.

.

.

.

.

Jet il,n(x, y)

Gabor Wavelet filter bank

corrugated image i(x, y)

Figure 12. Example of Gabor Wavelet transform of the corrugated image 

We have applied the GWT, combining the parameters applied to the Gabor Filter case and 
to the DWT case, i.e., applying three decomposition levels and four orientations (0, π/2, 3/4 
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π and π, with σ=2 and radial discrete frequency F= 322 ). Figure 12 shows a set of 
convolutions of an image affected by corrugation with wavelets based kernels. The set of 
filtered images obtained for one image is referred to as a “jet”. 
From each one of the above preprocessing techniques, we have derived 4 (one for each 
orientation of Gabor filter preprocessing), 9 (one for each subband HH, LH, HL of the three 
DWT decomposition levels) and 12 pre-processed images ( )yxip ,  (combining the 3 scales 

and 4 orientations of Gabor Wavelet Transform preprocessing). Mean and variance: 

( )dxdyyxipp = ,μ (9)

( ) dxdyyxi ppp

2
),( −= μσ  (10) 

of each pre-processed image ( )yxip ,  have been therefore used to build the feature vectors to 

be fed as input to the classification process.  

5.2 Classification  

We have classified the extracted features using two different classifiers as described in 
Paragraph 7.8. Considering the results obtained both by k-Nearest Neighbour and Support 
Vector Machine (see Appendix E), Gabor filters perform better compared to others features 
extractors. In this context, we have discarded Neural Networks in order to better control the 
internal dynamic. 
Moreover, Gabor filter bank has been found to be preferred even considering the number of 
feature images extracted to form the feature vector for each filtering approach. In fact, the 
problem in using Wavelet and Gabor Wavelet texture analysis is that the number of feature 
images tends to become large. Feature vectors with dimension 8, 18, 24 for Gabor, Wavelet 
and Gabor Wavelet filters have been used, respectively. In addition, its simplicity, its 
optimum joint spatial/spatial-frequency localization and its ability to model the frequency 
and orientation sensitive typical of the HVS, has made the Gabor filter bank an excellent 
choice for our aim to detect the presence/absence of a particular class of surface defects as 
corrugation.

6. FPGA-Based Hardware Implementation 

Today, programmable logics play a strategic role in many fields. In fact, in the last two 
decades, flexibility has been strongly required in order to meet the day-after-day shorter 
time-to-market. Moreover, FPGAs are generally the first devices to be implemented on the 
state-of-art silicon technology.  
In order to allow ViSyR to get real time performance, we have directly implemented in 
hardware BDB and RD&TB. In a prototypal version of our system, we had adopted -for 
implementing and separately testing both the blocks- an Altera’s PCI High-Speed 
Development Kit, Stratix™ Professional Edition embedding a Stratix™ EP1S60 FPGA. 
Successively, the availability in our Lab of a Dalsa Coreco Anaconda-CL_1 Board 
embedding a Virtex II™ Pro XC2VP20 has made possible the migration of BDB onto this 
second FPGA for a simultaneous use of both the blocks in hardware. 
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A top-level schematic of BDB and RDT&B are provided in Figure 13.a and 13.b respectively, 
while Figure 14 shows the FPGAs floorplans. 

(a)

(b)
Figure 13. A top-level schematic of (a) RD&TB and (b) BDB, as they can be displayed on 
Altera’s QuartusII™ CAD tool 
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Therefore, even if FPGAs were initially created for developing little glue-logic, they 
currently often represent the core of various systems in different fields. 

(a) (b) 

Figure 14. Floorplans of (a) Altera StratixTM EP1S60 and (b) Xilinx Virtex IITM Pro 20 after 
being configured 

6.1 RD&TB: Modules Functionalities  

The architecture can be interpreted as a memory: the task starts when the host “writes” a 
800-pixel row to be analyzed. In this phase, the host addresses two shift registers inside the 
DOUBLE_WAY_SLIDING_MEMORY (pin address[12..0]) and sends the 800 bytes via the 
input line DataIn[31..0] in form of 200 words of 32 bits. 
As soon as the machine has completed his job, the output line irq signals that the results are 
ready. At this point, the host “reads” them addressing the FIFO memories inside the 
OUTPUT_INTERFACE.  
A more detailed description of the modules is provided in the follow.  
Input Interface 
The PCI Interface (not explicitly shown in Figure 13.a) sends the input data to the 
INPUT_INTERFACE block, through DataIn[63..0]. INPUT_INTERFACE separates the input 
phase from the processing phase, mainly in order to make the processing phase 
synchronous and independent from delays that might occur during the PCI input. 
Moreover, it allows of working at a higher frequency (clkHW signal) than the I/O (clkPCI 
signal).
Double Way Sliding Memory 
As soon as the 800 pixel row is received by INPUT_INTERFACE, it is forwarded to the 
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DOUBLE_WAY_SLIDING_MEMORY, where it is duplicated into 2 shift registers. These 
shift registers slide in opposite way in order to detect both the end and the begin of the rail 
interval according to the search algorithm formalized in Figure 4. 
For saving hardware resources and computing time, we have discarded the floating point 
processing mode and we have adopted fixed point precision (see Paragraph 7.7).  
By this way, DOUBLE_WAY_SLIDING_MEMORY: 
• extracts r’ according the policy of Figure 4; 
• partitions r in four segments of pixels and inputs them to PREPROCESSING_PCA in 

four trances via 100byte[799..0].
PCA Preprocessing 
PREPROCESSING_PCA computes equation (A.7) in four steps. In order to do this, 
PREPROCESSING_PCA is provided with 100 multipliers, that in 12 clock cycles (ccs) 
multiply in parallel the 100 pixels (8 bits per pixel) of r’ with 100 coefficients of um(12 bits per 
coefficient, m=1..12). These products are combined order to determine the 12 coefficients al

(having 30 bits because of the growing dynamic) which can be sent to PCAC via 
Result[29..0] at the rate of 1 coefficient per cc. 
This parallelism is the highest achievable with the hardware resources of our FPGAs. 
Higher performance can be achieved with more performing devices. 
Multi Layer Perceptron Neural Classifier  
The results of PREPROCESSING_PCA has to be classified according to (1), (2) and (3) by a 
MLPN classifier (PCAC). 
Because of the high hardware cost needed for arithmetically implementing the activation 
function f(x) -i.e., (3)-, PCAC divides the computation of a neuron into two steps to be 
performed with different approaches, as represented in Figure 15. 

LUT 1,0
[storing w1,m,0]

MAC1,0

* +

MAC1,7

* +

AF_LUT ...

...

am+1

*

MAC2,0

~
+

LUT 1,7
[storing w1,m,7]

LUT 2,0
[storing w2,m,0]

n2,k    step (a) n2,k    step (b) n3,0    step (a) n3,0    step (b) 

>T

Figure 15. PCAC functionality 

Specifically, step (a): 

+= wnbiasx (11)
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is realized by means of Multiplier-and-ACcumulators (MACs), and step (b): 

( )xfn = (12)

is realized by means of a Look Up Table (for what concerns neurons n2,k) and comparers (for 
what concerns neuron n3,0). More in detail: 
• neurons n2,k, step (a): PCAC has been provided with 8 Multiplier-and-ACcumulators 

(MACs), i.e., MAC1,k (k=0..7), each one initialized with biask. As soon as a coefficient al

(l=1..12) is produced by PREPROCESSING_PCA, the multipliers MAC1, k multiply it in 
parallel by w1,m,k (m=l+1, k=0..7). These weights have been preloaded in 8 LUTs during 
the setup, LUT1, k being related to MAC1, k and storing 12 weights. The accumulation 
takes 12 ccs, one cc for each coefficient al coming from PREPROCESSING_PCA; at the 
end of the computation, any MAC1, k will contain the value xk.

• neurons n2,k, step (b): The values xk  are provided as addresses to AF_LUT through a 
parallel input/serial output shift register. AF_LUT is a Look up Table which maps at 
any address x the value of the Activation Function f(x). The adopted precision and 
sampling rate are discussed in Paragraph 7.4.  

• neuron n3,0, step (a): This step is similar to that of the previous layer, but it is performed 
using a unique MAC2, 0 which multiplies n2,k (k=0..7) by the corresponding w2,k,0 at the 
rate of 1 data/cc.  

• neuron n3,0, step (b): Since our attention is captured not by the effective value of n3,0, but 
by the circumstance that this might be greater than a given threshold T=0.7 (the result 
of this comparison constitutes the response of the classification process), we implement 
step (b) simply by comparing the value accumulated by MAC2, 0 with f -1(T).

Output Interface 
Because of its latency, PCAC classifies each pattern 5 ccs after the last coefficient is provided 
by PREPROCESSING_PCA. At this point, the single bit output from the comparer is sent to 
OUTPUT_INTERFACE via PCACOut. 
This bit is used as a stop signal for two counters. Specifically, as soon as a value "1" is gotten 
on PCACOut, a first counter CB is halted and its value is used for determining which 
position of the shift of the DOUBLE_WAY_SLIDING_MEMORY is that one centered at the 
begin of the "rail vector" interval. Afterward, as soon as a value "0" is received from 
PCACOut, a second counter CE is halted signaling the end of the "rail vector" interval. At 
this point, Irq signals that the results are ready, and the values of CB and CE packed in a 64 
bits word are sent on DataOut[63..0]. Finally, the host can require and receive these results 
(signal read).  

6.2 BDB: Modules Functionalities

Similarly to RD&TB, even BDB can be interpreted as a memory which starts its job when the 
host “writes” a 24x100 pixel window to be analysed. In this phase, the host addresses the 
dual port memories inside the INPUT_INTERFACE2  (pins address[9..0]) and sends the 2400 
bytes via the input line data[63..0] in form of 300 words of 64 bits. As soon as the machine 
has completed his job, the output line irq signals that the results are ready. At this point, the 
host “reads” them addressing the FIFO memories inside the OUTPUT_INTERFACE. 

                                                                
2 In addition, INPUT_INTERFACE aims at the same goals of decoupling the input phase from the 
processing phase, as previously said in the case of RD&TB. 
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Daubechies DWT Preprocessing 
Daubechies 2-D DWT preprocessing is performed by the cooperation of the 
SHIFTREGISTERS block with the DAUB_LL2_FILTER block.  
Even in this case, we have discarded the floating point processing mode and we have 
adopted fixed point precision (see Paragraph 7.7). Moreover, since we are interested 
exclusively on the LL2 subband, we have focused our attention only on that.  
It can be shown that, for the 2-D DWT proposed by Daubechies in [Daubechies (1988)] 
having the 1-D L filter:  

0,035226 -0,08544 -0,13501 0,45988 0,80689 0,33267 (13)

the LL2 subband can be computed in only one bi-dimensional filtering step (instead of the 
classical twice-iterated two monodimensional steps shown in Figure 23 in Appendix C), 
followed by a decimation by 4 along both rows and columns. Figure 16 reports the applied 
symmetrical 16x16 kernel. 

Figure 16. Symmetrical 16x16 kernel for directly computing in one 2-D step the LL2 subband 
of the DWT based on the 1-D low-pass filter . The filtering has to be followed by decimation 
by 4 along both rows and columns 

We decided of computing LL2 directly in only one 2-D step, because: 
• this requires a controller much simpler than the one used by the separable approach 

(Figure 23, in Appendix C); 
• separable approach is greatly efficient in computing all the four subbands of each level. 

But ViSyR’s classification process does not need other subbands than LL2;
• when fixed point precision is employed, each step of the separable approach produces 

results with different dynamic, so doing, the hardware used at a certain step becomes 
unusable for implementing the further steps;  

• the error (due to the fixed point precision) generated in a unique step does not 
propagate itself and can be easily controlled. Conversely, propagation occurs along four 
different steps when LL2 is computed by means of separable approach.  
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In this scenario, SHIFTREGISTERS implements a 16x16 array which slides on the 24x100 
input window shifting by 4 along columns at any clock cycle (cc). This shift along columns is 
realized by a routing among the cells as that one shown in Figure 17, that represents the jth

row (j=0..15) of SHIFTREGISTERS.  

p(m+4,8), p(m+4,4), p(m+4,0)     ...     p(m,8), p(m,4), p(m,0)

p(m+4,9), p(m+4,5), p(m+4, 1)     ...     p(m,9), p(m,5), p(m,1)

p(m+4,10), p(m+4,6), p(m+4,2)     ...   p(m,10), p(m,6), p(m,2)

p(m+4,11), p(m+4,7), p(m+4,3)     ...   p(m,11), p(m,7), p(m,3)

Not used

j,0 j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8 j,9 j,10 j,11 j,12 j,13 j,14 j,15

Figure 17. The jth row of the array of 16x16 shift registers in the SHIFTREGISTERS block. 
Each square represents an 8-bit register 

The shift by 4 along the rows is performed by INPUT_INTERFACE which feeds into the jth

row of the array only the pixels p(m, n) of the 24x100 input window (m=0..23, n=0..99) 
where:

 j mod 4=m mod 4 (14) 

At any cc, sixteen contiguous rows of the input window are fed in parallel into 
SHIFTREGISTERS at the rate of 64 bytes/cc (4 bytes of each row for 16 rows) through 
IN[511..0]. Simultaneously, all the 256 bytes latched in the 16x16 array are inputted in 
parallel into DAUB_LL2_FILTER through OutToDaubLL256bytes[2047..0]. 
DAUB_LL2_FILTER exploits the symmetry of the kernel (see Figure 16), adding the pixels 
coming from the cells (j, l) to those ones coming from the cells (l, j) (j=0..15, l=0..15); 
afterwards, it computes the products of these sums and of the diagonal elements of the 
array by the related filter coefficients, and, finally, it accumulates these products.  
As a result, DAUB_LL2_FILTER produces the LL2 coefficients after a latency of 11 ccs and at 
the rate of 1 coefficient/cc. These ones are now expressed in 35 bits, because of the growing 
of the dynamic, and are input into MLPN_CLASSIFIER via InFromDaub[34..0].  
We are not interested in higher throughput, since -because of FPGA hardware resources- 
our neural classifier employs 10 multipliers and can manage 1 coefficient per cc. 
Haar DWT Preprocessing 
Computationally, Haar Transform is a very simple DWT since its 1-D filters are: L=[1/2, 
1/2] and H=[1/2, -1/2]. Therefore, any coefficient H_LL2(i, j) can be computed in one step 
according to: 
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In order to compute (15), we exploit the same SHIFTREGISTERS block used for performing 
Daubechies DWT and a HAAR_LL2_FILTER block. HAAR_LL2_FILTER trivially adds[3] the 
data coming from OutToHaar16bytes[255..0] which are the values of the pixels p(m, n) of the 
4x4 window centered on the 16x16 sliding array implemented by SHIFTREGISTERS.  
By this way, after a latency of 2 cc, HAAR_LL2_FILTER produces 1 coefficient (expressed by 
12 bits) per cc and provides it to MLPN_CLASSIFIER via HaarLL2[11..00]. Higher 
performance is unnecessary, since the data flow of this block is parallel at that of 
                                                                

[3] The scaling by 16 is simply performed by a shift left of the fixed point of 4 positions.
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DAUB_LL2_FILTER.
Multi Layer Perceptron Neural Classifier  
As we have seen in Paragraph 4, the MLPN_CLASSIFIER implements two classifiers (DC 
and HC, see Figure 1) . Their structure is similar to that already described in Figure 15. The 
logical AND of their output is sent to the OUTPUT_INTERFACE via DCOutXHCOut. 
Output Interface 
The result of the classification is extended in a word of 64 bits by and sent to the host 
DataOut[63..0].

7. Experimental Results and Performance  

In order to design and test ViSyR's processing core, a benchmark video sequence of more 
than 3,000,000 lines, covering a rail network of about 9 km was acquired. These were used in 
order to conduct several experiments aiming firstly at defining some methodological 
strategies and then at designing and testing the resulting system. In the following, several of 
the above experiments are described. 

7.1 Rail Detection Methodologies Definition  

Firstly, the approach to be used for the rail head detection algorithm has been selected 
comparing different approaches. In order to do this, methods based on Correlation, on 
Gradient based neural network, on PCA with threshold, PCA with neural network classifier, 
were implemented in software. A subset of the benchmark video sequence was sampled at a 
rate of 1000 lines, taking care of including among them, several lines showing rail switches. 
The obtained vector, of more than 300 lines, was manually inspected, detecting the real 
value of xc, to be used as reference in order to evaluate the precision reachable by the tested 
methods. Among those, PCA with neural network classifier resulted the most accurate. 
In Figure 18 are reported the coordinates of xc both real (i.e., manually extracted) and 
automatically estimated by the realized system. The average of the absolute error was 6.04 
pixels. The only evident discontinuities occur in concomitance of three rail switches, 
resulting in the spikes of Figure 18.b which reports the magnified error. We would put in 
evidence that, five other switches have been correctly analyzed. Anyway, except in these 
cases, the errors are almost always less than 10 pixels, and never more than 20. This error 
makes the method fully efficient for our practical purpose.  
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Figure 18. (a): Real and estimated coordinates of xC . (b): error. RS denotes rail switch 
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7.2 Single Value Decomposition Matrices Construction Definition  

Matrices A and C were derived according to (A.1) and (A.4) using 450 examples of vectors ri

extracted from the acquired video sequence. After having determined the eigenvectors uj

and their eigenvalues λj, we verified that 12 eigenvectors were enough to represent the 91% 
of the information content of input data.  

7.3 MLPN Classifiers Training Value  

Error Back Propagation algorithm with an adaptive learning rate [Bishop (1995)] was used 
to determine the biases and the weights of the PCAC classifier. The adopted training set 
contained 262 different 400-pixels vectors centered on the rail (positive examples) and 570 
negative examples consisting of 400-pixels vectors extracted from the video sequence, for 
what concerned RD&TB, while, for BDB, 391 positive examples of hexagonal-headed bolts 
with different orientations, and 703 negative examples consisting of 24x100 pixels windows 
extracted from the video sequence were used.  

7.4 Activation Function Design  

The analytical hardware implementation of the activation function f(x) -equation (3)- needs 
huge resources, as well as, introduces much latency. We have implemented it by a look up 
table AF_LUT, storing 4096 values f(x') computed onto 4096 equidistant values in [-5, 5] and 
assuming: 
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AF_LUT was filled using words of 5 bits, that was found the best compromise in terms of 
detection accuracy and hardware cost.  

7.5 False Positive Elimination  

In defining the preprocessing strategy, we observed that, though the classifier DC, based on 
Daubechies DWT, reached a very high detection rate (see Paragraph 7.9), it also produced a 
certain number of False Positives (FPs) during the Exhaustive search.  
In order to reduce these errors, a “cross validation” strategy was introduced. Because of its 
very low computational overhead, Haar DWT was taken into account and tested. HC, a 
neural classifier working on the LL2 subband of the Haar DWT, was designed and trained: 
HC reached the same detection rate of DC, though revealing much more FPs.  
Nevertheless, the FPs resulting from HC were originated from different features (windows) 
than those causing the FPs output from DC. This phenomenon is put in evidence by Figure 
19, where a spike denotes a detection (indifferently true and false positives) at a certain line 
of the video sequence revealed by DC (Figure 19.a) and by HC (Figure 19.b) while they 
analyzed in Exhaustive search (i.e., without jump between couple of bolts) 4,500 lines of 
video sequence. Figure 19.c shows the logical AND between the detections (both True and 
False Positive) of DC and HC. In other words, it shows the results of (7). 
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(a)

(b)

(c)
Figure 19. Detected couples of bolts vs video sequence, analyzed in Exhaustive search (i.e., 
without jump between couples of detected bolts). (a) Daubechies Classifier; (b) Haar 
Classifier; (c) Crossed validation 

 True Positive 
(TP)

False Positive 
(FP)

FP/TP FP/Analyzed 
Lines

Haar DWT 22 (100%) 90 409% 000
00.200

Daubechies DWT 22 (100%) 26 118% 000
08.57

AND (Daubechies, Haar) 22 (100%) 2 9% 000
04.4

Table 1. False Positive (Exhaustive Search) 

As it is evidenced, only 2 FPs over 4,500 analyzed lines (90,000 processed features) are 
revealed by the crossed validation obtained by the logical AND of DC and HC. Numerical 
results are reported in Table 1.  
It should be noted that the shown ratio FP/TP is related to the Exhaustive search, but it 
strongly decreases during the Jump search, which skips a large number of lines that of 
course do not contain bolts.  
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7.6 Hook Bolts Detection

In order to test the generality of our system in detecting other kinds of bolts, we have tested 
ViSyR even on the hook bolts. Firstly, a second rail network employing hook bolts (see 
Figure 20) and covering about 6 km was acquired.  

                        
(a) (b)

Figure 20. Sample image patterns of the (a) right hook bolts and (b) left hook bolts 

Two training sets TS1 and TS2 were extracted. They contained 421 negative examples, and 
respectively 172 positive examples of left hook bolts (TS1), and 172 examples of right hook 
bolts (TS2). Therefore, TS1 and TS2, were used for training the MLPN Classifiers devoted to 
inspect respectively the left and on the right side of the rail. Finally, the remaining video 
sequence was used to test the ability of ViSyR even in detecting hook bolts.  

7.7 Hardware Design Definition  

The report (file log) obtained from the above experiment was used as term of comparison 
for the reports of similar experiments aiming at defining the number of bits per words to be 
used in the hardware design. The fully-software prototype of ViSyR was modified changing 
the floating point operating mode into the fixed point mode. Different versions of ViSyR 
were compiled with different precisions (i.e., number of bits). For what concerned RD&TB, 
12 bits for the eigenvectors coefficients and 28 bits for the weights of the classifier, allowed 
an accuracy only 0.6% lower than that one achievable using floating point precision while 23 
bits for the filter coefficients and with 25 bits for the weights of both the classifiers led to 
detect visible bolts with accuracy only 0.3% lower than that obtained using floating point 
precision. These settings were considered acceptable, and the hardware design was 
developed using these specifications. 

7.8 Rail Corrugation Analysis and Classification Strategy  

As said in Paragraph 5, feature vectors have been respectively determined considering mean 
and variance of:
• each Gabor filter output image ( )yxi ,θ , one for orientation θ (0, π/2, π, ¾ π), getting a 

feature vector composed by 8 features;  
• each HL, LH and HH subbands of each decomposition level, getting a feature vector 

composed by 18 features; 
• each image of the jet (consisting of three decomposition levels -as in the wavelet 

transform case- per four orientations -as in the Gabor Filter case-), getting a feature 
vector composed by 24 features. 

In order to test the performances of a k-Nearest Neighbor classifier, we have used a leave-
one-out (LOO) procedure. Table 2 shows the number of misclassifications for different 
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values of K, for a training set of Gabor filtered images (GF), Wavelet filtered images (WF) 
and Gabor-Wavelet filtered images (GWF).  

K
3 5 7 9 11 13 15

GF 3 3 6 5 5 4 5
WF 3 4 10 13 14 14 16
GWF 3 5 4 5 5 4 5

Table 2. KNN Classifier: Number of misclassifications for different values of K 

In order to make independent the results from the kind of classifier, we have performed a 
comparison with the SVM classifier. In a preliminary step, we have evaluated the optimal 
regularization parameter C and polynomial kernel K(x,y) in order to configure the SVM 
classifier and get the best performance in terms of accuracy for the whole system. The 
results, using the LOO procedure, are presented in Table 3 for a regularization parameter 
C=150 and a polynomial kernel K(x,y)=[(xy)/k] where k is a normalization factor for the dot 
product.

C=150, K(x,y)=[(xy)/k] 
GF 0
WF 12
GWF 10

Table 3. SVM Classifier: Number of misclassifications for C=150 and K(x,y)=[(xy)/k] 

7.9 Accuracy and Computing Performance  

The accuracy of RD&TB was measured on a test set of more than 1,500 vectors (832 positives 
i.e., rails, 720 negatives i.e., non rails). 99.8% of positives and 98.2% of negatives were 
correctly detected. The accuracy in detecting the presence/absence of bolts was also 
measured. A fully-software prototype of ViSyR, employing floating point precision, was 
executed in “trace” modality in order to allow an observer to check the correctness of the 
automatic detections. This experiment was carried out over a sequence covering 3,350 bolts. 
ViSyR detected 99.9% of the visible bolts, 0.1% of the occluded bolts and 95% of the 
absences. These performances have been possible also thanks to the crossed classification 
strategy described in Paragraph 4. 
Even more accurate was the recognition rate in case of hook bolts, since together with a 
100% of detected absent and present bolts, the system also achieved an acceptable rate 
detection of partially occluded hook bolts (47% and 31% respectively for left and right), 
whereas, it was not so affordable in case of occluded hexagonal bolts. This circumstances is 
justified since the hexagonal shape could cause miss classification because its similarity with 
the stones on the background. 
Moreover, a better behavior in terms of detection of occluded hook bolts even speeds up the 
velocity. In fact, though the velocities reached during the Jump and the Exhaustive search 
does not present significant differences with respect those obtained with the hexagonal bolts 
the system remains (in the case of hook bolts) for longer time intervals in the Jump search, 
because of the higher detection rate. This leads to a higher global velocity.  
For what concerns DAB, the comparative study aiming at define the most accurate  feature 
extractor-classifier paradigm, it was found that a SVM classifier with C=150 and 
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K(x,y)=[(xy)/k], cascaded to a Gabor Filter, as described in Paragraph 5 reached 100% of 
detection both of corrugated and non-corrugated rails. 
Table 4 resumes ViSyR's accuracy. 

  Detection Rate 
rail vectors 99.8% RD&TB non-rail vectors 98.2% 
visible hexagonal bolts 99.6% 
occluded hexagonal bolts 0.1% 
absent hexagonal bolts 95% 
visible left hook bolts 100% 
occluded left hook bolts 47% 
absent left hook bolts 100% 
visible right hook bolts 100% 
occluded right hook bolts 31% 

BDB

absent right hook bolts 100% 
corrugated rails 100% DAB non-corrugated rails 100% 

Table 4. Detection accuracy 

Computing performance was measured too, for what concerns the functionality of RD&TB 
and BDB (i.e. the ViSyR's modules already implemented in hardware). In particular, over 
than 15,000 couples of bolts have been detected in more than 3,000,000 lines at the velocity of 
166 km/h. This performance is given by the combination of the Jump search and of the 
Exhaustive search, being the velocities reached during these phases approximately of 4 
km/h and 444 km/h, and obviously depends on the distribution of the two kinds of search 
for the inspected video sequence. For instance, Figure 21 shows how the two types of search 
commutate during the process, for the tested video sequence.  
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Figure 21. The way in which the system commutates during (a) the Exhaustive search and 
(b) the Jump search 

The maximum elapsed time in the Exhaustive search is less than 3”. This means that the 
Exhaustive search finds a couple of bolts (left and right) after less than 3” in the worst cases. 
At this point the control switches on the Jump search that, because of its philosophy, is 
much faster. When activated, Jump search works uninterruptedly up to 17”, for the 
analyzed sequence (Figure 21.b). Obviously, if the system remains in the Jump phase for a 
long time, performance can increase subsequently. Next work will be addressed in this 
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direction, for example, automatically skipping those areas where the fastening elements are 
covered by asphalt (i.e., level crossing, where Exhaustive search is executed in continuous).  

8. Conclusive Remarks 

This paper has presented ViSyR, a visual system able to autonomously detect the bolts that 
secure the rail to the sleepers and to monitor the rail condition.  
Thanks to a FPGA-based hardware implementation, it performs its inspection at velocities 
that can reach 460 km/h. In addition to this computing power ViSyR is also characterized by 
an impressive accuracy and is highly flexible and configurable, being the decision level of 
both RD&TB, BDB and DAB based on classifiers that can be easily reconfigured in function 
of different type of rails and bolts to be inspected and detected.  
ViSyR constitutes a significant aid to the personnel in the railway safety issue because of its 
high reliability, robustness and accuracy. Moreover, its computing performance allows a 
more frequent maintenance of the entire railway network. 
A demonstrative video of ViSyR is available at: 
 http://ftp-dee.poliba.it:8000/Marino/ViSyR_Demo.MOD 
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Appendix A. Principal Component Analysis (PCA) 

Let i j row-images, each one having N pixels, object of the analysis. 
Let R a set of P images rk (k=1..P, P ≥ N). Such images rk, having Q pixels with Q <N, have 
been extracted from the images ij, and chosen in order to select instances of the objects.  

Figure 22. Rail head row image example 

Let A the Q rows and P columns matrix: 

 A=[h1 ,…., hP]  (A.1)  

with:

 hk = rk - μ  (A.2)  

where:

μ= [μ1,..,μ P]T  (A.3)  

with μk denoting the average of intensities in rk.
From A, the covariance matrix: 

 C=AAT  (A.4)  

can be built. The QxQ matrix C contains information about mutual relationships among rail 
images rk.
In Principal Component Analysis [Gong et al. (2001), Jain et al. (2000).] the eigenvectors uj

(j=1..N) of C define a new reference space in which the variance among data is maximized. 
Moreover, an ordering relationship on uj components can be induced sorting the 
eigenvectors uj in such way that: 

λq > λq+1    (q=1, .., Q-1)  (A.5)  

where the eigenvalues λj of C, represent the variances of each one of uj. In other words, (A.5) 
means that the set of projections of the input data on uq has variance higher than that one of 
the set of projections of the input data on uq+1.
By thresholding the eigenvalues λj it is possible to select the corresponding L<Q
eigenvectors sufficient enough to represent the biggest part of the informative content of the 
input data. Let λl (l=1..L, L<Q) the selected components, a generic vector r’ can be expressed 
by:

''
1

μur +≈
=

L

l
lla   (A.6)  

where μ’ is the average vector of r’. From a computational point of view the eigenvectors 
and eigenvalues of C can be estimated by a Single Value Decomposition (SVD) of matrix A
where the coefficients al are evaluated by the inner product: 

 al = (r’-μ’)ulT  (A.7)  
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In this scenario, the vector 

 a’=[a1 ,…., aL]T (A.8)

can be considered a feature containing most of information content of r’.  

Appendix B. Gabor Filter  

In the complex spatial 2D domain, Gabor filter is given by:  

( ) ( ) xjFeyxgyxh ′⋅′′= π2,, (B.1)

where

( )
+−

⋅=
2

2

2

2

2
1

2
1, yx

yx

yx

eyxg σσ

σπσ
(B.2)

and x' and y' are the rotated coordinates: 

( ) ( )θθθθ cossin,sincos, yxyxyx +−+=′′ (B.3)

xσ and
yσ  are the standard deviations of Gaussian envelope along the x and y directions, F

frequency of sinusoidal plane and and θ  is the orientation [Wen at al. (1994)]. 
Thus (B.1) is a complex sinusoidal grating modulated by a 2D gaussian function [25].  
Gabor functions have been found useful because reach the lower bounds of the uncertainty 
inequalities π41≥ΔΔ ux  and π41≥ΔΔ vy  and achieve optimally joint resolution in space and 
spatial frequency [Bovik et al. (1990)].  

Appendix C. Wavelet Transforms 

The wavelet transform [Daubechies (1988), Mallat (1989), Daubechies (1990 a), Antonini et al.
(1992)], is a mathematical technique that decomposes a signal in the time domain by using 
dilated/contracted and translated versions of a single finite duration basis function, called 
the prototype wavelet. This differs from traditional transforms (e.g., Fourier Transform, 
Cosine Transform, etc.), which use infinite duration basis functions. One-dimensional (1-D) 
continuous wavelet transform of a signal x(t) is: 

−= dt
a

bttx
a

baW ψ)(1),( (C.1)

where −
a

btψ  is the complex conjugate of the prototype wavelet, −
a

btψ ; a is a time 

dilation and b is a time translation.
Due to the discrete nature (both in time and amplitude) of most applications, different 
Discrete Wavelet Transforms (DWTs) have been proposed according to the nature of the 
signal, the time and the scaling parameters.  
The two-dimensional (2-D) DWT works as a multi-level decomposition tool. A generic 2-D 
DWT decomposition level j is shown in Figure 23.  
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It can be seen as the further decomposition of a 2-D data set LLj-1 (LL0 being the original 
input image) into four subbands LLj, LHj, HLj and HHj. The capital letters and their position 
are related respectively to the applied mono-dimensional filters (L for Low pass filter, H for 
High pass filter) and to the direction (first letter for horizontal, second letter for vertical). 
The band LLj is a coarser approximation of LLj-1. The bands LHj and HLj record the changes 
along horizontal and vertical directions of LLj-1, respectively, whilst HHj shows high 
frequency components. Because of the decimation occurring at each level along both the 
directions, any subband at the level j is composed by NjxMj elements, where Nj=N0/2j and 
Mj=M0/2j.

1-D Filters along rows

LL j

(Mj xNj samples) 
input to the level j+1

H

L

LH j

(Mj xNj samples) 

HL j

(Mj xNj samples) 

H

L

HH j

(Mj xNj samples) 

H Mj-1 xNj samples

L Mj-1 xNj samples

LL j-1
(Mj-1xNj-1 samples)

output from the level j-1

1-D Filters along columns

Figure 23. 2-D DWT: The jth level of subband decomposition.  represents decimation by 2 

Appendix D. Gabor Wavelet Transform 

As seen in Appendix C, Wavelet transform can be chosen as mathematical model for its 
adaptability in resolution both in frequency and space domains relating to a scale 
parameter, while Gabor filters assure the lower limits of uncertainty inequalities (as 
described in Appendix B) in the space frequency domain. As consequence, Gabor functions 
can be considered as mother function of the Wavelet transform. On these bases, a set of 2D 
Gabor Wavelet filters can be defined through a projection of the signal into a family of M
Gabor Wavelet functions { }

Mnnn ψψψ ,,,
21

=Ψ derived from a process of contractions and 

dilations of a function, the so-called mother Gabor-Wavelet. 
In two dimensions the Gabor Wavelet Functions [Lee (1996)] take the form: 
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σ

πσ
ψ sincos2cossinsincos

2
1

2

21 22
2

2
, yxxyxyyxx cycxjFscycxscycxsx eesyx −+−−+−−+−+−−

=n
(D.1)

where n is a parametric vector [ ]yxyx sscc ,,,, θ , with cx and cy representing the contractions of 

the GWT along x and y respectively, sx and sy represent the dilations along the two scales, 
and θ the orientation.  
In addition, the dilations sx and sy can be selected as sx= sy=2l for l=0,…, L-1, with L is the 
number of decomposition levels, and sx cx = sy cy =k. As consequence, (D.1) can be written as:  
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and the responses of Gabor-Wavelet filters ( )yxil ,n,  can be defined as: 

( ) ( ) ( )yxiyxyxil ,,,, ∗= nn ψ (D.3)

where l is a certain level into pyramidal structure.  

Appendix E. Support Vector Machine (SVM) 

Support Vector Machine (SVM) [Vapnik (1998)] is based on the structural risk minimization 
principle from computational learning theory, or better on minimization of the 
misclassification probability of vectors with unknown distribution of data. With respect to 
the neural approach, SVM allows a better control of dynamics of the classifier. Examples of 
use of the SVM are given in [Bahlmann et al. (2002), Papageorgiou & Poggio. (1999) Drucker 
et al. (1997), Osuna et al. (1997)]. The basic idea of SVM consists of imagining some hyper-
planes that divide the hyper-space containing the vectors v to be classified into two sub-
hyper-spaces where positive examples of v (classified with +1) and negative examples of v
(classified with -1) of the training set { }NS vvv ...,,, 21=  are respectively located.  
There are many possible classifiers that can separate the data with hyper-planes 0=+⋅ bvw ,
but there is only one that maximizes the distance between the closest vectors to the hyper-
plane and the hyper-plane itself. SVM finds the optimal separating hyper-plane:  

0** =+⋅ bvw (E.1)

maximizing the margin and minimizing the number of misclassified patterns. In (E.1), the 
optimal weight vector is expressed as linear combination of the examples of the training set 
S:
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=
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** λ (E.2)

where { }1,1−∈iy  is the label (or class) of the vector iv , and the optimum 
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Nλλλλ =  (where 0* ≥iλ ) is a solution of a quadratic problem. The vectors iv with 

0* >iλ are said "support vectors". The classification of new vectors v involves the evaluation 
of the decision function y=sign(f(v)) where: 

*

1

**)( bybf ii
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meaning that v can be classified by evaluating the dot product between v and some 
elements (support vectors) of the training set S. 
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1. Introduction 

One of the key competences for autonomous mobile robots is the ability to build a map of 
the environment using natural landmarks and to use it for localization (Thrun et al., 1998, 
Castellanos et al, 1999, Dissanayake et al, 2001, Tardos et al. 2002, Thrun et al., 2004). Most 
successful systems presented so far in the literature have relied on range sensors such as 
laser scanners and sonar sensors. For large scale, complex environments with natural 
landmarks the problem of SLAM is still an open research problem. Recently, the use of 
vision as the only exteroceptive sensor has become one of the most active areas of research 
in SLAM (Davison, 2003, Folkesson et al., 2005, Goncavles et al., 2005, Sim et al., 2005, 
Newman & Ho., 2005).  
In this chapter, we present a SLAM system that builds maps with point landmarks using a 
single camera. We deal with a set of open research issues such as how to identify and extract 
stable and well-localized landmarks and how to match them robustly to perform accurate 
reconstruction and loop closing. All of these issues are central to success, especially when an 
estimator such as the Extended Kalman Filter (EKF) is used. Robust matching is required for 
most recursive formulations of SLAM where decisions are final. Even for methods that 
allow the data associations to change over time, e.g. (Folkesson & Christensen, 2004, Frese & 
Schröder 2006), reliable matching is very important. 
One of the big disadvantages with the laser scanner is that it is a very expensive sensor. 
Cameras, on the other hand, are relatively cheap. Another aspect of using cameras for 
SLAM is the much greater richness of the sensor information as compared to that from, for 
example, a range sensor. Using a camera it is possible to recognize features based on their 
appearance. This provides the means for dealing with one of the most difficult problems in 
SLAM, namely data association.  
The main contributions of this work are i) a method for the initialisation of visual landmarks 
for SLAM, ii) a robust and precise feature detector, iii) the management of the measurement 
to make on-line estimation possible, and iv) the demonstration of how this framework 
can facilitate real-time SLAM even with an EKF based implementation. 
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2. Related Work 

Working with a single camera, the measurements will be of bearing only type. This means 
that a single observation of a landmark is not enough to estimate its full pose since the depth 
is unknown. This problem is typically addressed by combining the observations from 
multiple views as in the structure-from-motion (SFM) approaches in computer vision. The 
biggest difference between SLAM and SFM is that SFM considers mostly batch processing 
while SLAM typically requires on-line, real-time performance. 
The fact that the full pose of a landmark cannot be estimated from a single observation leads 
to one of the most important problems that has to be addressed in bearing only SLAM; 
landmark initialisation. Several approaches have been presented in the literature. In 
(Davison, 2003) a particle filter was used to represent the unknown initial depth of features. 
The drawback of the approach is that the initial distribution of particles has to cover all 
possible depth values for a landmark, which makes it difficult to use when the number of 
detected features is large. A similar approach has been presented in (Dissanayake et al., 
2005) where the initial state is approximated using a Gaussian Sum Filter for which the 
computational load grows exponentially with number of landmarks. The work in (Lemarie 
et al. 2005) proposes an approximation with additive growth. It uses a weighted Gaussian 
sum approximation for the depth estimate of uninitialised landmarks. Gaussians in the sum 
are deleted when they no longer are supported by subsequent observations. When a single 
Gaussian remains, the landmark is initialised given that a few other conditions are fulfilled. 
Another, more practical problem associated with landmark initialisation comes from the 
limited field of view of a normal perspective camera in combination with the robot typically 
moving along the optical axis as pointed out in (Goncavles et al., 2005). To cope with the 
reconstruction problem, a stereo-based SLAM method was presented in (Sim et al., 2005) 
where Difference-of-Gaussians (DoG) is used to detect distinctive features which are then 
matched using SIFT descriptors. An important problem mentioned is that their particle filter 
based approach is inappropriate for large-scale and textured environments. One of the 
contributions of our work is that we deal with this problem by identifying only a few high 
quality features in the scene to perform SLAM. 
Another problem mentioned in (Sim et al., 2005) is related to the time-consuming feature 
matching. We address this by using a KD-tree to make our matching process very fast. The 
visual feature detector used in our work is the Harris corner detector  across different scales 
represented by a Laplacian pyramid, similar to what is suggested in (Mikolajczyk & Schmid 
2003). For feature matching, we use a modified SIFT descriptor in combination with KD-
trees.
Working in indoor environments means that the floor is typically flat and the SLAM 
problem can be simplified by assuming that the robot is constrained to a plane. However, 
there are many repetitive features stemming from, for example, right angle corners. A single 
SIFT descriptor is not discriminative enough in an image to solve the data association 
problem. To address this, ``chunks'' of SIFT points were used to represent landmarks in an 
outdoor environment in (Luke et al., 2005). This was motivated by the success that SIFT has 
had in recognition applications where the object/scene was represented as a set of SIFT 
points. In our approach, the position of a landmark is defined by a series of SIFT points 
representing different views of the landmark. Each such point is accompanied with a chunk 
of descriptors that make the matching/recognition of landmarks more robust. Our 
experimental evaluation shows also that our approach performs successful matching even 
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with a narrow field of view, which was mentioned as a problem in (Goncavles et al., 2005, 
Sim et al., 2005). 
Yet another problem in SLAM is loop closing, that is the ability to detect when the robot 
comes back to a position it has been to previously and thereby closing a loop. (Newman & 
Ho, 2005) argue for using laser for the geometric mapping but to rely on visual input to 
solve the loop-closing problem. The message is that robustness is best achieved if the same 
mechanism is not used for the mapping and the loop closing detection. In (Newman & Ho, 
2005) visually salient, so called ``maximally stable extremal regions'' or MSERs, encoded 
using SIFT descriptors, are used to detect when the robot is revisiting an area. In (Gutmann 
& Konolige, 1999) scan matching is used to detect when loops are closed. We show in this 
chapter that our framework also can be used for loop closing detection. 
In the remainder of this chapter we will make a distinction between recognition and location 
features. A single location feature will be associated with several recognition features. The 
recognition features' descriptors then give robustness to the match between the location 
features in the map and the features in the current image. The key idea is to use a few high 
quality features to define the location of landmarks and then use the other features for 
recognition. This contributes to a low complexity (few location features) while maintaining 
highly robust matching (many recognition features). 

3. Feature Description 

The SIFT descriptor (Lowe, 1999) has been used frequently in both computer vision and 
various robot vision applications. It has been shown in (Mikolajczyk & Schmid 2003) to be 
the most robust descriptor regarding scale and illumination changes. The original version of 
the SIFT descriptor uses feature points determined by the peaks of a series of Difference of 
Gaussians (DoG) on varying scales.  In our system, peaks are found using Harris-Laplace 
features, (Mikolajczyk & Schmid 2001) since they respond to regions of high curvature, 
instead of blob-like image structures obtained by series of DoG. This leads to features 
accurately localized spatially, which is essential when features are used for reconstruction 
and localization, instead of just recognition.  
In a sparse, indoor environment many of the detected features originate from corner 
features. The original SIFT descriptor assigns canonical orientation at the peak of smoothed 
gradient histograms. This means that similar corners but with a significant rotation 
difference can have similar descriptors. This may potentially lead to many false matches. For 
example, the four corners of the waste bin in Figure 2. may all match if rotated. Therefore, 
we use a rotationally 'variant' SIFT descriptor where we avoid the canonical orientation at 
the peak of smoothed gradient histogram and leave the gradient histogram as it is. 

4. Landmark Selection and Initialisation 

Landmark initialisation is a key issue in bearing only vision SLAM. To determine which 
image features that are worth turning into landmarks, we match the features across N 
frames. Features that are successfully matched over enough frames become candidates for 
landmarks in the map. Such a matching buffer also allows us to calculate an estimate of the 
3D position of the corresponding landmark by multi view triangulation. The SLAM process 
is fed measurements from the output side of the frame buffer, which means that the 
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measurements are delayed N frames with respect to the input side of the buffer. Figure 1. 
illustrates this idea. 

Figure 1. A buffer of N image frames is used for matching, selection & triangulation 

Figure 2. Many structures in indoor environments look similar even when rotated 

The benefit of this is that the SLAM process can be fed with few and high quality 
landmarks. In addition, since an estimate of the 3D position of landmarks can be supplied 
with the first measurement of a landmark, the landmarks can immediately be fully 
initialised in the SLAM process. This allows immediate linearisation without the need to 
apply multiple hypotheses (Lemarie et al., 2005) or particle filtering (Davison, 2003) 
techniques to estimate the depth. It is important to point out that the approximate 3D 
position found from the buffer of frames is only used for initialising the point landmark at 
the correct depth with respect to the camera at the first observation. The uncertainty in 
depth is still assumed to be very high, as problems with incorporating information twice 
would otherwise occur. Comparing to a multiple hypothesis approach, it is like knowing 
which of the multiple hypotheses about the depth is correct right away which saves 
computations. Having the correct depth allows us, as said before, to reduce the linearisation 
errors that would results from having a completely wrong estimate of the depth. 
Assuming that the delay caused by the length of the buffer is not too large, it is possible to 
make a quite accurate estimate of the current robot pose by using dead reckoning 
information to predict forward from the pose estimated by the SLAM process. For typical 
values of N, the addition to the robot position error caused by the dead reckoning is small 
and we believe that the benefits of being able to initialise landmarks using bearing-only 
information and perform feature quality checks are more significant. The predication 
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forward in time is done in each iteration from the latest pose estimated by SLAM. This way 
there is no accumulation of dead reckoning errors other than over the short distances 
corresponding to the size of the buffer. 
In addition to requiring that features can be tracked over more than a certain predefined 
number of frames, we require that the image positions of the feature allow good 
triangulation and that the resulting 3D point is stable over time in the image. Requiring that 
the feature can be tracked over several frames removes noise and moving targets that could 
otherwise severely damage the estimation process. Good triangulations rule out features 
that have a high triangulation uncertainty, typically because of small baseline or having 
bearings near the direction of motion. The third requirement removes features that lack 
sharp positions in all images due to parallax or a lack of a strong maximum in scale space. 
Difference in scales of the images can also cause apparent motion of features, such as for 
example a corner of a non-textured object. 
We have used a fixed value for N, i.e. the length of the buffer, in our tests. The values 
between 10 and 50 have been tested. A buffer with all frames acquired from the same 
camera pose would be of little use for triangulation. Therefore, a new frame is added to the 
buffer when the camera has moved enough since the last added frame. This way, it is likely 
that there is enough baseline for estimating the location. The value of N depends very much 
on the motion of the robot/camera and the camera parameters. For a narrow field of view, 
camera mounted in the direction of motion of the robot as in our case the effective baseline 
will be quite small. An omnidirectional camera would offer one way to deal with the small 
field of view. Another idea is to actively control the direction of the camera as in (Vidal-
Calleja et al., 2006). 

5. Feature Tracking 

The buffer with data from the past N frames does not contain the whole images, but rather 
the feature points that have been extracted in each frame. An even higher reduction of space 
could be achieved by using an indexing scheme as in (Nistér & Stewénius, 2006). The feature 
points are tracked over consecutive frames. To estimate if two feature points match, we use 
the distance between the descriptors, i.e. between the 128-dimensional vectors associated 
with the SIFT descriptors. On the left hand side of Figure 3. the organization of the frame 
memory is shown. Notice the lists that store the associations between the points for the 
different frames in the buffer. Ideally, each association list corresponds to one landmark in 
the world and denotes how the projection of this landmark moves in the image as the robot 
moves.  
The SIFT descriptor is invariant to changes in scale and view angle but only up to a certain 
degree. The change between two consecutive observations in the buffer is however typically 
quite small and makes tracking possible. The different descriptors in the list correspond to 
different viewpoints of the same landmark. 
As was previously described, the buffer is used to sort the good from the bad landmarks. 
The output from the frame memory is a small selection of all the features points in the oldest 
frame. These points are the ones that are judged to be the best with respect to the criteria 
mentioned earlier. Some of these points correspond to observations of already existing 
landmarks and some to the first observation of a new landmark. For each new landmark 
observation, an estimate of the 3D position is obtained by triangulating the points in the 
corresponding association list. The number of points that are used as observations in each 
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frame is typically only a small fraction of all points in that frame. This helps reducing the 
complexity. The time to perform the tracking over frames has constant complexity assuming 
that the number of features in each frame is bounded.  
Only using the similarity of the point descriptor for tracking has two problems. First, it 
requires that all points in the image are tested for similarity which is computationally 
expensive and second, it can lead to false matches in cases where there are similar structures 
in multiple places in the image. To address these issues we predict the approximate image 
location for the old point features in the new frame using odometry and optical flow 
estimates. The predicted image location allows us to narrow the search region for each 
feature match and thus increase efficiency. Notice that the buffer allows us to predict feature 
points observed not only in the very last frame but also further back. This increases the 
robustness in the tracking, as some feature points are not present in every frame.  

Figure 3. A schematic view of the frame memory and the database 

Feature points in a new frame that do not match any of the old feature points with their 
predicted image locations are matched to a database of initialised landmarks. This allows 
the system to deal with loop closing situations, i.e. the case where the robot re-visits an area 
it has been to before. Landmarks are added to this database at the same time, as the first 
observation is output from the frame memory.  

6. Landmark Re-Detection and Loop Closing 

The database serves a purpose not only for true loop closing situations but also when the 
robot turns abruptly. Landmarks not in the field of view will eventually leave the frame 
memory. When the robot turns the camera back to this region it is important that new 
landmarks are not created but rather that matches are found to the already existing 
landmarks. As discussed in the previous section, landmarks appear different from different 
viewpoints. To handle this, the database stores a number of descriptors for each landmark, 
corresponding to its appearance from different viewpoints. The different descriptors for a 
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landmark in the database are provided by the frame memory. For every new observation of 
a landmark the descriptor is compared to the existing ones and used to augment the 
descriptor list if it is different enough.  
The SIFT point descriptors are not globally unique (see Figure 2. again) and thus matching a 
single observation to a landmark is doomed to cause false matches in a realistic indoor 
environment. However, using large number of SIFT descriptors has proven to give robust 
matching results in object recognition applications. This is why we store, along with the 
landmark descriptor associated with the location of the landmark, the rest of the descriptors 
extracted from the same frame and use these for verification. We refer to the rest of the 
feature points in a frame as recognition features to distinguish them from the location 
feature associated with the location of the landmark. 
The structure of the database is shown on the right hand side in Figure 3. Each landmark 
F1,,F2,...,FN has a set of location descriptors shown in the dashed box. A KD-tree 
representation and a Best-Bin-First (Beis & Lowe, 1997) search allow for real-time matching 
between new image feature descriptors and those in the database. Each location descriptor 
has a set of recognition descriptors shown to the right.  
When we match to the database, we first look for a match between a single descriptor in the 
new frame and the location descriptors of the landmarks (dashed box Figure 3.). As a second 
step, we match all descriptors in the new frame to the recognition descriptors associated 
with candidate location descriptors for verification. As a final test, we require that the 
displacement in image coordinates for the two location features (new frame and database) is 
consistent with the transformation between the two frames estimated from the matched 
recognition descriptors (new frame and database). This assures that it is not just two similar 
structures in the same scene but that they are at the same position as well. Currently, the 
calculation is simplified by checking the 2D image point displacement. This final 
confirmation eliminates matches that are close in the environment and thus share 
recognition descriptors such as would be the case with the glass windows in Figure 2. 

7. SLAM 

The previous sections have explained how we track features between frames to be able to 
determine which make good landmarks and how these are added to, represented in and 
matched to the database. In our current system, we use an EKF base implementation of 
SLAM. It is however important to point out that the output from the frame memory could 
be used as input to any number of different SLAM algorithms. It is possible to use normal 
EKF despite its limitation regarding complexity since most features extracted from the 
frames have been discarded by the matching and quality assessment process in the frame 
memory. Even though hundreds of features are extracted in each frame only a fraction of 
these are used for estimation. We are also able to supply the approximate 3D location of new 
landmark so that no special arrangement for this has to be added in the SLAM algorithm. 
This also makes the plug-n-play of SLAM algorithm easier.  
We use the same implementation for SLAM that was used in (Folkesson et al, 2005). This is 
part of the freely available CURE/toolbox software package. In (Folkesson et al, 2005) it was 
used for vision SLAM with a camera pointing up in the ceiling. 
To summarize, the division is such that the SLAM process is responsible for estimating the 
location of a landmark and the database for its appearance. 
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8. Experimental Evaluation 

Figure 4.  The PowerBot platform with the Canon VC-C4 camera 

The camera used in the experimental evaluation is a Canon VC-C4 camera mounted in the 
front on a PowerBot platform from MobileRobotics Inc (see Figure 4.). The experimental 
robot platform has a differential drive base with two rear caster wheels. The camera was 
tilted upward slightly to reduce the amount of floor visible in the image. The field of view of 
the camera is about 45 degrees in the horizontal plane and 35 in the vertical plane. This is a 
relatively small field of view. In addition, the optical axis is aligned with the direction of 
motion of the platform so that it can be used for other navigation tasks. The combination of 
a small field of view and motion predominantly along the optical axis makes it hard to 
generate large baselines for triangulation. 
The experimental evaluation will show how we are able to build a map of the environment 
with few but high quality landmarks and how detection of loop closing is performed. 
The setting for the experiment is an area around an atrium that consists of loops of varying 
sizes. We let the robot drive 3 laps following approximately, but not exactly, the same path. 
Each lap is about 30m long. The trajectory along with the resulting map is shown in Figure 
5. The landmarks are shown as small squares. Overlayed on the vision based map is a map 
built using a laser scanner (the lines). This second map is provided as a reference for the 
reader only. The laser scanner was not used at all in the vision experiments. Figure 6. shows 
the situation when the robot closes the loop for the first time. The lines protruding from the 
camera point out the points that are matched. Figure 7. shows one of the first acquired 
images along with the image in which the two matches shown in Figure 6. were found just 
as the loop is closed for the first time.  
There are a number of important observations that can be made. First, there are much fewer 
landmarks than typically seen in maps built using point landmarks and vision, see e.g. (Sim 
et al., 2005, Se et al., 2002). We can also see that the landmarks are well localized as they fall 
closely to the walls. Notice that some of the landmarks are found on lamps hanging from the 
ceiling and that the area in the upper left corner of Figure 6. is quite cluttered. It is a student 
study area and it has structures at many different depths. A photo of this area is shown in 
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Figure 8. The line picked up by the laser scanner is the lower part of the bench where people 
sit and not the wall behind it. This explains why many of the points in this area do not fall 
on the laser-based line. Some of the spread of the point can also be explained by the small 
baseline. The depth error is inversely proportional to the baseline (Hartley & Zisserman, 
2000).

Figure 5. The landmark map with the trajectory and reference laser based map 

Figure 6. Situation when the first loop is closed. Lines show matched points 
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Another observation that can be made is that the final map contained 113 landmarks and 
that most of these were added to the map during the first loop (98). This indicates that 
landmarks were matched to the database rather than to be added to the map. Had this not 
been the case one would have expected to see roughly 3 times the number of landmarks.  
As many as half of the features in each frame typically do not match any of the old features 
in the frame memory and are thus matched to the database. A typical landmark in the 
database has around 10 descriptors acquired from different viewing angles. The matching to 
the database uses the KD-tree in the first step that makes this first step fast. This often 
results only in a few possible matching candidates.  

Figure 7. One of the matched points in the first loop detection (compare to Figure 6) 

Figure 8. Cluttered area in upper right corner of Figure 5 

In the experiments, an image resolution of 320x240 was used and images were grabbed at 
10Hz. Images were added to the frame buffer when the camera had moved more than 3cm 
and/or turned 1 degree. The entire experimental sequence contained 2611 images, out of 
which roughly half were processed. The total time for the experiment was 8min 40s and the 
processing time was 7min and 7s on a 1.8GHz laptop. This shows that it can operate under 
real-time conditions 
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9. Conclusions and Future Work 

For enabling the autonomy of robotic systems, we have to equip them with the ability to 
build a map of the environment using natural landmarks and to be able to use it for 
localization purposes. Most of the robotic systems capable of SLAM presented so far in the 
literature have relied on range sensors such as laser scanners and sonar sensors. For large 
scale, complex environments with natural landmarks the problem of SLAM is still an open 
research problem. More recently, the use of cameras and machine vision as the only 
exteroceptive sensor has become one of the most active areas of research in SLAM. 
The main contributions presented in this chapter are the feature selection and matching 
mechanisms that allow for real-time performance even with an EKF implementation for 
SLAM. One of the key insights is to use few, well localized, high quality landmarks to 
acquire good 3D position estimates and then use the power of the many in the matching 
process by including all features in a frame for the verification. Another contribution is our 
use of a rotationally variant feature descriptor to better deal with the symmetries that are 
often present in indoor environments.  An experimental evaluation was presented on data 
collected in a real indoor environment. Comparing the landmarks in the map built using 
vision with a map built using a laser scanner showed that the landmarks were accurately 
positioned.
As part of the future research we plan to investigate how the estimation process can be 
improved by using active control of the pan-tilt degrees of freedom of the camera on the 
robot. By such coupling, the baseline can actively be made larger to improve 
triangulation/estimation results. It would also allow the system to use good landmarks, 
otherwise not in the field of view, to improve the localization accuracy and thus the map 
quality.   
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1. Introduction    

Object recognition is an important research topic in computer vision. Not only it is the 
ultimate goal of computer vision, but is also useful to many applications, such as automatic 
target recognition (ATR), mobile robot localization, visual servoing, and guiding visually 
impaired people.  
Great progress in this field has been made during the last 30 years. During 1970~1990, the 
research focused on the recognition of machine parts or polyhedral objects using edge or 
line information (Lowe, 2006, Faugeras & Hebert, 1986). A 2D invariant feature and hashing-
based object recognition was popular during the 1990s (Mundy & Zisserman, 1992, 
Rothwell, 1993). Since the mid 1990s, view or appearance-based methods have become a 
popular approach in computer vision (Murase & Nayar, 1995). Current issues cover how to 
select a feature, handle occlusion, and cope with image variations in photometric and 
geometric distortions. Recently, object recognition methods based on a local visual patch 
showed successful performance in those environmental changes (Lowe, 2004, Rothganger et 
al., 2004, Fergus et al., 2003). But these approaches can work on textured complex object and 
do not provide 3D pose information of interesting objects. 
The goal of our research is to get the identification and pose information of 3D objects or 
targets from either a visible or infrared band sensor in a cluttered environment. The 
conventional approaches as mentioned above do not provide satisfying results. To achieve 
this goal more effectively, we pay attention to the perception mechanism of the human 
visual system (HVS), which shows the best efficiency and robustness to the above 
mentioned problems. Especially, we focus on the components of HVS robustness. 

2. Robust Properties of HVS 

How have humans recognized objects robustly in a severe environment? What mechanisms 
cause a successful recognition of 3D objects? Based on these motivations, we researched 
various recent papers on psychophysical, physiological, and neuro-biological evidences and 
conclude the following facts: 
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2.1 Visual object representation in human brain 

The HVS uses both view-based and model-based object representation (Peters, 2000). 
Initially, novel views of an object are memorized, and an object-centered model is generated 
through training many view-based representations. Another supporting evidence of this fact 
is that different visual tasks may require different types of representations. For 
identification, view-based representations are sufficient. 3D volume-based (or object 
centered) representations are especially useful for visual guidance of interactions with 
objects, like grasping them. In this paper, the goal is object identification and estimating the 
pose of objects for grabbing by a service robot. Therefore, both representations are suitable 
for our task. 

2.2 Cooperative bottom-up and top-down information 

Accordingly (Nichols & Newsome, 1999), not only the bottom-up process but also top-down 
information plays a crucial role in object recognition. Bottom-up process, called image-
based, data-driven or discriminative process, begins with the visual information and 
analyses of smaller perception elements, then moves to higher levels. Top-down process is 
called knowledge-based perception, task dependent, or generative process. This process, 
such as high level context information (ex. place information) and expectation of the global 
shape, has an influence on object recognition (Siegel et al., 2000, Bar, 2004). So an image-
based model is proper to the bottom-up and place context, and object-centered 3D model is 
suitable to top-down. The spatial attention is used to integrate separate feature maps in each 
process. From the detailed investigations in physiological and anatomical areas, many 
important functions of the bottom-up process were disclosed. Although the understanding 
of the neural mechanism of the top-down effects is still poor, it is certain that the object 
recognition is affected by both processes guided by the attention mechanism. 

2.3 Robust visual feature extraction 

(1) Hierarchical visual attention (Treisman, 1998): The HVS utilizes three kinds of 
hierarchical attention: spatial, feature and object. We utilize these attentions to the proposed 
system. Spatial attention is performed by a high curvature point like Harris corner, feature 
attention is made on local Zernike moments, and 3D object attention is done by the top-
down process. 
(2) Feature binding (Treisman, 1998): The binding problem concerns the way in which we 
select and integrate the separate features of objects in the correct combinations. Separate 
feature maps are bound by spatial visual attention. In the bottom-up process, we bind an 
edge map with a selected corner map and generate local structural parts. In the top-down 
process, we bind a gradient orientation map with gradient magnitude map focusing on a 
CAD model position. 
(3) Contrast mechanism (VanRullen, 2003): Important information is not the amplitude of a 
visual signal, but is the contrast between this amplitude at a given point and at the 
surrounding location. This fact is true in the whole recognition process. 
(4) Size-tuning process (Fiser et al., 2001): During object recognition, the visual system can 
tune in to an appropriate size sensitive to spatial extent, rather than to variations in spatial 
frequency. We use this concept for the automatic scale selection of the Harris corner. 
 (5) Part-based representation (Biederman, 1987): Visual perception can be done from part 
information supported by RBC (recognition by components) theory. It is related to the 
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properties of V4 receptive field, where the convex part is used to represent visual 
information (Pasupathy & Connor, 2001). A part-based representation is very robust to 
occlusion and background clutter. We represent visual appearance by a set of robust visual 
part.
Motivated by these facts, many computational models were proposed in computer vision. 
Researchers of model-based vision regarded bottom-up/top-down processes as 
hypothesis/verification paradigms (Kuno et al., 1988, Zhu et al., 2000). To reduce 
computational complexity, visual attention mechanism is used (Milanese et al. 1994). Top-
down constraint is used to recognize face and pose (Kumar, 2002). Recently, an interesting 
computational model (HMAX) was proposed based on the tuning and max operation of a 
simple cell and a complex cell, respectively (Serre & Riesenhuber, 2004). In a computer 
vision society, Tu et al. proposed a method of unifying segmentation, detection and 
recognition using boosting and prior information by learning (Tu et al., 2005). Although 
these approaches have their own advantages, they modeled only on partial evidences of 
human visual perception, and did not pay attention to the robust properties of HVS more 
closely.  
In this paper, we propose a computationally plausible model of 3D object recognition, 
imitating the above properties of the HVS. Bottom-up and top-down information is 
processed by a visual attention mechanism and integrated under a statistical framework.  

3. Graphical Model of 3D Object Recognition 

3.1 Problem definition 

A UAV (unmanned aerial vehicle) system, such as a guided missile, has to recognize an 
object ID (identity) and its pose from a single visible or infrared band sensor. The goal of 
this paper is to recognize target ID and its pose in a UAV system, using a forward-looking 
visible or infrared camera. The object pose information is necessary for precise targeting. 
We want to find the object name ( IDθ ), the object pose ( Cθ : yawθ , pitchθ , rollθ ) relative to 
camera coordinates in a 3D world, the object position ( : ,P x yθ θ θ ) and the object scale ( Dθ )
in a 2D image. This information is useful in various applications. Similar processes exist in a 
primary visual cortex: ventral stream (what pathway) and dorsal stream (where pathway). 
The recognition problem can be formulated as the Bayesian inference by 

( | ) ( | , ) ( | , ) ( | )

( | , , , , ) ( , , , | )

{ , }

L C L C C

L ID C D P C ID C D P C

L C

P I P Z Z P Z Z P Z
P Z Z P Z

where I Z Z
θ θ θ θ θ θ θ θ

= ∝
=

=
  (1) 

where  means the parameter set as explained, I  denotes input image, and it is composed 
of two sets: LZ  for object related local features CZ  for place or scene related contextual 
features. The likelihood of the equation (1), the first factor ( | , )L CP Z Z  represents the 
posterior distribution of local features, such as local structural patch, edge information given 
parameters and contextual information. There is a lot of contextual information, but we 
restrict the information as place context and a 3D global shape for our final goal. This 
information alleviates the search space and provides accurate pose information. The second 
factor ( | )CP Z  provides context-based priors on object ID, pose which are related to the 
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scene information by learning. This can be represented as a graphical model in a general 
form as Figure 1 (Borgelt et al., 2001). Scene context information can be estimated in a 
discriminative way using contextual features CZ . Using the prior learning between scene 
and objects, initial object probabilities can be obtained from sensor observation. Initial pose 
information is also estimated in a discriminative way. Given those initial parameters, fine 
pose tuning is performed using a 3D global shape and sensor measurements, such as 
gradient magnitude and gradient orientation. 
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Figure 1. Graphical model of context-based object recognition: shaded circles mean 
observations and clear circles mean hidden variables 

In the above graphical model, final parameters can be inferred from a discriminative 
method (bottom-up reasoning, such as directed arrows) and a generative method (top-down 
reasoning) with contextual information. To find an optimal solution from the equation (1), a 
MAP (maximum a posteriori) method is used generally. But it is difficult to obtain a correct 
posterior for a high dimensional parameter space (in our case 7 dimension). We bypass this 
problem by a statistical technique, drawing samples using a Markov Chain Monte Carlo 
(MCMC) technique (Green, 1996). The MCMC method is theoretically well-proved and a 
suitable global optimization tool for combining bottom-up and top-down information, 
which reveals superiority to genetic algorithm or simulated annealing although there are 
some analogies to the Monte Carlo method (Doucet et al., 2001). MCMC-like mechanism 
may not exist in the HVS, but it is a practically plausible inference technique in a high 
dimensional parameter space. Proposal samples generated from a bottom-up process 
achieve fast optimization or reduce burn-in time. 

3.2 Basics of MCMC 

A major problem of Bayesian inference is that obtaining the posterior distribution often 
requires the integration of high-dimensional functions. The Monte Carlo (or sampling) 
method approximates the posterior distribution as weighted particles or samples (Doucet et 
al., 2001, Ristic et al., 2004). The simplest kind is importance sampling, where random 
samples x  are generated from ( )P X , the prior distribution of hidden variables, and then 
weight the samples with their likelihood ( | )P y x . A more efficient approach in high 
dimension is called the Markov Chain Monte Carlo (MCMC), a subset of particle filter. The 
Monte Carlo means samples and the Markov Chain means that the transition probability of 
samples depends only on a function of the most recent sample value. The theoretical 
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advantage of the MCMC is that its samples are guaranteed to asymptotically approximate 
those which form the posterior. A particular implementation of the MCMC is the 
Metropolis-Hastings algorithm (Robert & Casella, 1999). The original algorithm is as 
follows: 

Algorithm 1: Metropolis-Hastings algorithm 

Draw an initial point 0θ  from a starting distribution ( )P θ .
For i=1..N 
 Draw candidate point *θ  from the jumping distribution * 1( | )i iJ θ θ −
 Calculate the ratio 

    * 1 *

1 * 1

( ) ( | )

( ) ( | )

i i

i i i

f J
f J

θ θ θα
θ θ θ

−

− −
=

 Set *iθ θ=  with probability min( ,1)α , otherwise 1i iθ θ −=
End for 

The key concept of the algorithm is that the next sample is accepted with a probability of α .
The next sample is obtained from jumping distribution or state transition function. Through 
the iteration, a sub-optimal solution can be obtained. However, the main problems of the 
method are a large burn-in time (the number of iterations until the chain approaches 
stationary) and poor mixing (staying in small regions of the parameter space for a long 
time). This can be overcome using domain information by the bottom-up process. Therefore, 
the finally modified algorithm is composed of the initialization part, calculated by the 
bottom-up process, and the optimization part obtained by the top-down process (see the 
Algorithm 2). 

3.3 Object recognition structure 

Figure 2 shows the proposed computational model of object recognition reflecting the robust 
properties of the HVS, as explained in section 2. Globally, bottom-up and top-down 
information is integrated under the statistical framework, MCMC. The object is represented 
as appearance-based in bottom-up, and object-centered in top-down. Furthermore, these 
object models are related to the scene context. Spatial attention is used to combine low-level 
feature maps for both bottom-up (in a local structure feature extraction block) and top-down 
(in shape matching block) processes. Detail computational procedures of each block are 
explained in the next sections. (Alogrithm 2 will help you to understand the proposed 
method.) 
From a computational viewpoint, the proposed MCMC consists of three components: 
initialization, MCMC sampling and optimization. The bottom-up process means 
accumulating evidence computed from local structures and discriminates scene identity. 
Based on the scene context and local structural information, initial parameters such as object 
ID, pose, position and scale are estimated. The initial parameters are used to activate the 3D 
shape context. The MCMC samples are generated by a jumping distribution, which 
represents state-transition probability. From this sample, a 3D shape model is rendered. The 
final decision of object recognition is made after iterative sample generation and global 
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shape matching. The decision information is fed back to the bottom-up process for another 
object recognition in the same scene. Algorithm 2 summarizes the overall recognition steps.
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Figure 2.  Overall functional model of the object recognition motivated by the robust 
properties of the HVS 

Algorithm 2: Domain knowledge & context-based 3D object recognition algorithm 

Stage I: Initialization by bottom-up process 
Step 1: Extract HCM, CEM in scale space 
Step 2: Find salient interesting points through scale space analysis. 
Step 3: Bind feature maps by relating salient HCM and the corresponding CEM 
Step 4: Extract local edge patches and calculate local Zernike moments 
Step 5: Discriminate scene ID through direct voting 
Step 6: Calculate the likelihood of object parameters from scene context and object 
discrimination by direct voting 
Step 6: Sort candidate parameters 0 = 0 0 0 0{ , , , }ID C P Dθ θ θ θ

Stage II: Optimization by top-down process 
Step 1: Extract GMM and GOM 
Step 2: Set initial point 0 = 0 0 0 0{ , , , }ID C P Dθ θ θ θ  from Stage I 
Step 3: Optimize parameters by MCMC sampling with feature map binding 

For t = 0, …, T 
Draw a candidate point *  from the jumping distribution * 1( | )t tJ −

Render the 3D CAD model based on shape context and *

Calculate the cost function *( )f , by focusing on the rendered model 
and the integrated feature maps (GMM+GOM) 
 Calculate the ratio 

* 1 *

1 * 1

( ) ( | )

( ) ( | )

t t

t t t

f Jr
f J

−

− −
=

Accept *t =  with probability min(r, 1), or 1t t−=
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End for 
Step 4: If ( )Tf ε< , recognition finished and fed back to the step 6 in Stage I. 

            Else reject 0  and go to step 2 with the next candidate 0

4. Scene Context-based Database 

Figure 3 shows the scene-context-based database which is composed of object-specific 
scenes, 3D object models and view-based visual parts and their corresponding graphical 
model. It is displayed on the left. 

4.1 Scene database 

Conventional object recognition methods usually tried to remove background information. 
However, the background information of a scene provides important cues to the existence of 
target objects which are static or immovable, such as buildings and bridges. We call this 
information scene context. Learning the scene context is simple. First, we store various 
scenes which contain an interesting object. Then local visual features are extracted and 
clustered. (Details are explained in the next section.) Finally, clustered features are labeled 
with a specific object name and stored in a database. This database is used to recognize 
scenes as in Figure 2. 

4.2 Object-centered model representation 

As we discussed in section 2, the HVS memorizes object models in an object-centered way 
through enormous training. A plausible computational model is a 3D CAD model constructed 
manually. In this paper, we use a simple wireframe model for global shape representation. 
This method is suitable for man-made rigid objects like buildings, bridges, and etc. A voxel-
based 3D representation may be appropriate for a generally shaped 3D object. The global 3D 
shape model provides the information of shape context which is useful to get the pose 
information and decision of the existence in the top-down process as Figure 2. 

Figure 3. Configuration of the database: scene context + 3D CAD model + part-based view 
representation
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4.3 View-based model representation 

Basically, the HVS memorizes objects in an orientation dependent, view-based or 
appearance-based way (Edelman & B lthoff, 1992). We quantize the view sphere by 30  and 
store each view as in Figure 3. Then, local visual parts for each view are extracted and 
represented using the proposed local feature. (Details will be explained in the next section). 

5. Initialization by Bottom-up Process 

A functional computational bottom-up process can be modeled as shown in Figure 2 (left 
half). Initial parameters are estimated through local feature extraction, discriminative 
method for scene recognition, and finally by discriminative process for object. Scene context 
provides prior information of a specific object ID which reduces the search space of the 
discriminative method for an object. 

5.1 Local feature extraction 

Binding by Attention

on Salient corner

Local Zernike Moments

Canny Edge Map in 

Scale space

Harris Corner Map in 

Scale space

Binding by Attention

on Salient corner

Local Zernike Moments

Canny Edge Map in 

Scale space

Harris Corner Map in 

Scale space

Figure 4. Block of local structural feature extraction: Canny Edge Map and Harris Corner 
Map are extracted in scale space which is bound by spatial attention on salient corners. Each 
local structural patch is represented using Zernike moments 
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Figure 4 shows the overall process for feature generation. We extract separate low-level 
feature maps such as Canny Edge Maps (called CEM) and Harris Corner Mapps (called 
HCM) in scale space. Then a perceptually salient corner and characteristic scale is calculated 
(Lindeberg, 1998). Locally structural visual parts are extracted by attending on CEM around 
salient corner points and scale tuned regions of HCM. The scale tuning process that exists is 
supported by the neuro-physiological evidence, as explained in section 2. Each patch whose 
size is normalized to 20 20×  is represented by local Zernike moments introduced in (Kim & 
Kweon, 2005).  
Step 1: Generation of separate feature maps 
In the bottom-up process, we assume that an object is composed of local structures. 
According to (Parkhurst et al., 2002), Parkhurst et al. experimentally showed the fact that 
bottom-up saliency map-based attention of Itti’s model is not suitable for learned object 
recognition. So, we adopt another spatial attention approach that the HVS usually attends 
on a high curvature point (Feldman & Singh, 2005). Although the HVS also attends on 
symmetrical points (Reisfeld et al., 1995), we only use the high curvature points for visual 
attention, since they are robust to a viewpoint and computationally easy to detect. We detect 
high curvature points directly from an intensity image using a scale-reflected Harris corner 
detector which shows highest repeatability in photometric, geometric distortions, and which 
contains enough information (Harris & Stephens, 1988, Schmid et al., 2000). A conventional 
Harris corner detector detects many clusters around a noisy and textured region. However, 
this doesn’t matter, since the scale-reflected Harris detector extracts corners in noise 
removed images by Gaussian scale space. Furthermore, since salient corners are selected in 
scale space, corner clusters are rarely found, as in Figure 5. Canny edge detector is used to 
extract an edge map which reflects similar processing of a center-surround detection 
mechanism (Canny, 1986). The CEM is accurate and robust to noise. Both low level maps are 
extracted pre-attentively.  
Step 2: Feature integration by attending on salient corners 
Local visual parts are selected by giving spatial attention to a salient corner. We use the scale 
space maxima concept to detect salient corners. We define that a corner is salient if the 
measure of convexity (here, Laplacian) of corners in scale axis shows a local maxima. A 
computationally suitable algorithm is scale-adapted Harris-Laplace method which shows 
most robust to image variations (Schmid et al., 2000). Figure 5 shows the salient corner 
detection results. To detect a salient corner, first we make a corner scale space by changing 
the smoothing factor (σ ). Then the convexity of corners are compared in scale axis. 
Finally, salient corners are selected by selecting the maximum convexity measure in the 
tracked corners in scale space. As a by product, a scale tuned region can be obtained as 
Figure 5. This image patch corresponds to a local object structure.  
Step 3: Local visual parts description by Zernike moments 
The local visual parts are represented using modified Zernike moments introduced in (Kim 
& Kweon, 2005). The Zernike moments were used to represent characters because they are 
inherently rotation invariant, as well as possessing superior image representation 
properties, information redundancy, and noise characteristics. A normalized edge part is 
represented as 20 dimensional vectors where each element is the magnitude of a Zernike 
moment. Although we do not know how the HVS represents local visual image, we utilize 
the local Zernike moments, since this feature is robust to scale, rotation and illumination 
changes.  
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The performance is evaluated in terms of interest region selector and region descriptor using 
ROC curve (Mikolajczyk & Schmid, 2003). We used 20 object images as a reference, and 
made test images by changing  the scale factor 0.8 times, planar rotation 45°, view-angle 25°, 
and illumination reduction by 0.7 time to the reference. For the comparison of the visual 
part detect, we used the same number of scale space, Zernike moment descriptor and image 
homography to check the correct matches. For the comparison of the descriptors, we use the 
same scale space, salient corner part detector and image homography for the same reason. 
Scale tuned region detector by the salient corner part detector almost outperform the SIFT 
(DoG-based) as in Figure 6 (a). In the descriptor comparison graph, SIFT and PCA show 
better performance than Zernike, as in Figure 6 (b). But this region of the low false positive 
rate is useless, because few features are found. In a noisy environment, our descriptor 
(Zernike) shows better performance. Figure 7 shows several matching examples using the 
salient corner with Zernike moments. Note the robust matching results in various 
environments.

Figure  5. Examples of salient corners on a different scale 
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(a)                                                                           (b) 
Figure 6. (a) Performance comparison of interest part selector: Salient corner vs. SIFT, (b) 
performance comparison of local descriptor: SIFT, Zernike, and PCA 
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Figure 7. Examples of feature matching using a salient corner part detector and a Zernike 
moments descriptor in illumination, occlusion, rotation, scale and view angle changes 

5.2 Initial parameter estimation by discriminative method 

The initial parameters of an object are estimated using a discriminative method, 1-nearest 
neighbor based voting. In the first step, scene identity is found using direct voting. This 
scene context provides the information of probable object ID. In the next step, other initial 
pose, position, and scale parameters are estimated for the object, using the same voting 
method. 
Step 1: Discriminative method on scene recognition, 
In equation (1), the scene context term ( | )CP Z  provides object related priors especially 
object ID. If we assume one object per scene for simplification, then initial object ID can be 
estimated directly from the scene discrimination process as equation (2).  
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( | ) ( | )ID C CP Z P s Zθ ≈   (2) 

The scene discrimination can be modeled as follows:  

1

~ arg max ( | ) arg max ( | )

ZCN
i

ID C C
s l i

S P s Z P s Zθ
=

= ≈   (3) 

where local feature i
CZ  belongs to scene feature set CZ , which usually corresponds to 

background features. s  is a scene label and 
CZN   is the number of input scene features. The 

posterior ( | )CP s Z  is approximated by the sum rule. We use the following binary 

probability model to design ( | )i
CP s Z :

ˆ1 ( ) ,  ( , )
( | )

0

i i i
i C E C
C

L Z s K Z ZP s Z
otherwise

δ∈ ≥=   (4) 

where ( )i
CL Z  denotes the label of feature i

CZ  searched by 1-nearest neighbor search and 
ˆ( , )i i

E CK Z Z  is Gaussian Kernel of Euclidean distance between input feature i
CZ  and 

corresponding scene DB feature ˆ iZ . The kernel threshold δ  usually set to 0.7~0.8. The final 
scene discrimination result provides scene context, prior information of object ID.  
Step 2: Discriminative method on initial object parameters 
Initial object ID is directly estimated from the scene context as step 1. Other object-related 
parameters are estimated by the same voting on view-based object DB. In equation (1), the 
initial parameters used in ( | , )L CP Z Zθ  can be directly discriminated as step 1, the voting 
scheme. Since we already know the initial object ID, the search space of other parameters are 
reduced enormously. The only difference is that the voting spaces are dependent on the 
parameters. For example, if we want to estimate the initial pose Cθ , we vote the nearest 
match pairs to the corresponding pose space (azimuth, elevation) like equation (3), and 
select the max. Given the initial object ID and pose, the initial object scale Dθ , and position 

Pθ  is estimated easily, since our part detectors extract characteristic part scale with its 
position in the image (see Figure 5). So, the initial scale is just the average of the 
characteristic scale ratio between scene and model image, and the initial object position is 
the mean of matching feature pairs (see Figure 5). Since object parameters are estimated 
based on salient feature and scene context which reduce the search space, there is no 
increase of estimation error. Figure 8 shows the sample scene database and scene 
discrimination result by direct voting for the test image. In this test, we used 20 scenes in 
canonical view points for database and the test image was captured on a different view 
point. The scene 16 is selected by max operation of the voting result. This scene contains the 
interesting object. So, we can initialize the object ID parameter from this scene context. 
Figure 9 shows a bottom-up result, where the 3D CAD model is overlaid using the initial 
parameters. There are some pose, scale, location errors. In addition, we cannot trust the 
estimated object ID. These ambiguities are solved through a top-down process using 3D 
shape context information.  
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Figure 8. (a) Examples of scene DB and test image on the right, (b) Scene context: nearest 
neighbor-based direct voting 

Figure 9. Initially estimated parameters by a bottom-up process 

6. Optimization and Verification by Top-down Process 

The Top-down process is crucial in the HVS. Although some top-down knowledge such as 
scene context information was already used for object discrimination, other context 
information like the expectation of a global 3D shape also has an important role in achieving 
more precise and accurate recognition. Figure 10 (or Figure 2: half right) shows the 
functional top-down procedures based on shape context initiated by a bottom-up process. 
Main components are model parameter prediction by jumping distribution and a global 2D 
shape matched by attending a shape model to combine gradient magnitude map (GMM) 



Vision Systems: Applications 170

and gradient orientation map (GOM). The model parameter prediction and shape matching 
are processed iteratively for statistical optimization. 

6.1 Generation of model parameters 

A posteriori in equation (1) is approximated statistically by MCMC sampling. Based on the 
initial parameters obtained in bottom-up process, the next samples are generated based on 
the jumping distribution, 1( | )i i iJ θ θ − . It is referred to as proposal or candidate-generation 
function for its role. Generally, random samples are generated to prevent local maxima. 
However, we utilize the bottom-up information and top-down verification result for 
suitable sample generation. In this paper, we use three kinds of jumping types, i.e., object 
addition, deletion and refinement as Table 1. 

The first type is to insert a new object and its parameters, depending on the result of a 
bottom-up process. The second is to remove a tested model and its parameters, determined 
by the result of top-down recognition. A jumping example of the third type is like equation 
(5). Next state depends on current state and random gain. This gain has uniform distribution 
(U) in the range of 30 , because the view sphere is quantized with this range. Here, 0

Cθ  is 
initialized by the result of a bottom-up process. 

1t t
C C Cθ θ θ−= + Δ   (5) 

where , ~ ( 15,15)
T

C yaw pitch roll C Uθ θ θ θ θ= Δ − .

Gradient Magnitude Map

(GMM)
Gradient Orientation Map

(GOM)

Meaningful 

Shape 

Matching

3D Shape Context Rendering CAD model

Attention

Gradient Magnitude Map

(GMM)
Gradient Orientation Map

(GOM)

Meaningful 

Shape 

Matching

3D Shape Context Rendering CAD model

Attention

Figure 10. 3D shape context-based top-down shape matching using MCMC: the 3D CAD 
model is rendered using the initial object parameters, then meaningful shape matching is 
performed by attending on the rendered 2D shape location and GMM, GOM. Final decision 
is made based on the MCMC optimization value 
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 Jump 
type Function  Parameters Jumping distribution 

J1 Object addition , , ,ID C D Pθ θ θ θ , Depend on bottom-up information 

J2 Object deletion , , ,ID C D Pθ θ θ θ Depend on top-down result 

J3 Fine tuning of 
parameters

, ,C D Pd d dθ θ θ

{ , , }

( 30,30)

( 30,30)

( 10,10)

( /5, / 5)

{ , }

{ 40,40}

{ 40,40}

C yaw pitch roll

yaw

pitch

roll

D D D D D

P x y

x

y

d U

d U

d U
d U

d U
d U

θ θ θ θ
θ
θ
θ
θ θ θ θ θ

θ θ θ
θ
θ

=

∈ −

∈ −

∈ −
∈ − +

=

= −
= −

Table 1. Jumping types and corresponding distributions 

6.2 Robust shape matching 

A predicted 3D CAD model generated by jumping distribution is rendered on the GMM 
and GOM image. Attending on the shape model points, both map information is combined 
as Figure 10. The scoring function used in the MCMC algorithm is defined by the shape 
matching. The shape matching between the rendered 2D shape and both maps is based on 
the computational gestalt theory (Desolneux et al., 2004). We propose a novel ε -meaningful 
shape matching method motivated from this theory.   
Two important concept of the theory is as follows: 
• Helmholtz principle: This principle provides a suitable mathematical tool for modeling 

computational Gestalt. Basically, it assumes that an image has random distribution of 
pixel values or orientations. If some pixels break the randomness, then these pixels have 
a certain pattern, called gestalt. 

• ε -meaningful event: A certain configuration is ε -meaningful if the expectation in an 
image of the number of occurrences of the event is less than ε .

ε -meaningful shape matching 
Since we only deal with intensity image or infrared image, all the available local information 
is just these three. 
• Pixel intensity: ( , )u x y

• Gradient magnitude: '( , ) , ( , )
u uu x y x y
x y

∂ ∂=
∂ ∂

• Gradient orientation: 1
( , ) , ( , )

( , )

u ux y x y
Du x y y x

θ ∂ ∂= −
∂ ∂

The last two components are useful for shape matching, since they are robust to illumination 
and noise. If we assume the image is random, then we can measure the structural alignment 
to a certain pattern. We can think of a matching at xi  that satisfy both the image gradient 
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and orientation. If the rendered shape model is compatible to the image gradient and 
orientation simultaneously, then this matching is meaningful. 

(a) (b) 

(c) (d) 

Figure 11. Shape matching examples on (http://www.cs.colostate.edu/~vision/ft_carson/): 
(a) original FLIR image, (b) GMM only, (c) GOM only, (d) proposed GMM+GOM 

If the length of the rendered 2D shape is l , the probability of the event that gradient values 
( (x)C ) are larger than a certain value, and orientation differences ( (x)O ) are within a 
precision along the shape model is defined in equation (6). The orientation precision is set to 
8 directions. 

1 1 2 2(x ) , (x ) (x ) , (x ) (x ) , (x ) (x, )
4 4 4

l
l lP C O P C O P C O Hπ π πμ μ μ μ≥ ≤ ⋅ ≥ ≤ ≥ ≤ =  (6) 

1 num of {x | (x) }
where, (x, )

8 total image size

CH μμ ≥= ⋅  , 

(x) x , x (x) (x) , I for input, M for model,x:I I MC u' ( ) O( ) (x, y)θ θ= = − .
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Definition: We call a matching between an image and a certain model is ε -meaningful 
shape matching if  

( ) (x, )lf N H μ ε= × ≤  (7) 

where N is the number of the test. The smaller this value is, the better the shape matching is. 
We use this ε -meaningful shape matching as a scoring function for the MCMC 
optimization method because this function provides a measure of shape matching. The 
Scoring or cost function acts as a means of measuring the goodness of the proposed model 
parameters. Generated samples are accepted or rejected based on this function. 
Figure11 shows the effectiveness of feature map binding in a top-down process. To show the 
power of feature map binding, we added Gaussian noise with a standard deviation 8. The 
binding GMM with GOM outperforms the single map based shape matching.  

Figure 12. Shape matching results for temperature varying FLIR sequences. The proposed 
method is very robust to temperature changes. The last image shows a false matching result 
where the roof target hardly detectable by human eyes 

     (a)                                               (b)                                                 (c) 
Figure 13. Parameter optimization by top-down process: (a) CAD model is overlaid with 
initial parameters, (b) after 10 iterations (c) after 40 iterations for the visible object 
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7. Experimental Results 

In this paper, our main goal is to recognize man-made architectures such as building, 
bridge, container, and etc. using a FLIR camera. As an initial test, we experimented on a 
polyhedral object using a CCD camera. Then we evaluated the system on a FLIR dataset.  
Figure 14 shows the overall interface of the target recognition system. This automatic target 
recognition system estimates the initial object parameters using scene and object DB. Then 
optimal parameter tuning is performed in top-down meaningful shape matching. From this 
result, the system makes a decision and feedbacks to the bottom-up process. 

Figure 14. System interface-(upper left): input image with final result is overlaid, (upper 
right): rendered 3D CAD model generated from bottom-up and jump distribution, (lower 
left): bottom-up process result, (lower right): top-down process result which shows the 
optimal parameters 

7.1 Test on visible database 

First, we tested the algorithm for the objects captured using the CCD camera. We made a 
database for quantized views as explained. Figure 9 shows some results of the bottom-up 
process. We can get proper initial parameter values. Figure 13 shows the projection of a 
model with refined parameters by a top-down process for each object placed in the general 
environment. The overall computation time is 2 sec (0.5 sec for the bottom-up process) on 
the average under AMD 2400+. 
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7.2 Test on FLIR Database 

The targets to recognize are shown in Figure 15. The sensor is FLIR Prism SP with resolution 
320×240, NTSC interface. These models contain some background information which 
provide scene context. 3D CAD models are acquired by manual measurements. 

Figure 15. FLIR targets to recognize: cars, building, container, and tower 

The test images are shown in Figure 16. They are composed of three types for the accurate 
performance evaluation for the practical use. The system has to recognize the targets in DB 
with high recognition rate and able to reject clutter objects or natural scenes.  

Figure 16. The composition of test images: targets in DB, targets not in DB, and natural 
scenes
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Figure 18. Successful recognition results 
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Figure 17 summarized our results compared with the methods of GMM only and GOM 
only. We used the performance measure as correct positive rate vs. false positive rate. In 
target recognition, the false positive rate is very important factor for practical system 
because false detections makes enormous damage. So, a good target recognition system has 
to high correct detection rate and very low false detection rate. During the performance 
comparison, we have the same bottom-up process with different top-down methods.  We 
take all test images into consideration for the optimal parameter tuning. Our method 
outperforms the other two, with correct detection rate 93.75% and false detection rate only 
2.85%. GOM-based method shows the worst performance. Figure 18 shows visual object 
recognition results for each object. 
Figure 19 shows a typical failure case of the proposed system. The failures occurred from a 
bottom-up failure due to severe noise and a top-down failure due to low contrast. 

Figure 19. Failure case due to top-down fails due to low contrast 

8. Conclusions 

We propose a new object recognition paradigm based on the robust properties of the HVS, 
especially in scene context and 3D shape context information in a bottom-up and a top-
down process. Furthermore, we also propose the cooperative feature map binding by 
utilizing both bottom-up and top-down processes and validate the system performance with 
various experiments. The test results on several images demonstrate efficiency in optimal 
matching as well as feasibility of the proposed recognition paradigm. The same paradigm 
will be extended to the general object recognition problem by changing the model 
representation.
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1. Introduction 

The human visual sense is the one among all other senses that gathers most information we 
receive. Evolution has optimized our visual system to negotiate one's way in three 
dimensions even through cluttered environments. For perceiving 3D information, the 
human brain uses three important principles: stereo vision, motion parallax and a-priori 
knowledge about the perspective appearance of objects in dependency of their distance. 
These tasks pose a challenge to computer vision since decades. Today the most common 
techniques for 3D sensing are CCD- or CMOS-camera, laser scanner or 3D time-of-flight 
camera based. Even though evolution has shown predominance for passive stereo vision 
systems, three additional problems are remaining for 3D perception compared with the two 
mentioned active vision systems above. First, the computation needs a great deal of 
performance, since the correlation of two images from a different point of view has to be 
found. Second, distances to structureless surfaces cannot be measured, if the perspective 
projection of the object is larger than the camera’s field of view. This problem is often called 
aperture problem. Finally, a passive visual sensor has to cope with shadowing effects and 
changes in illumination over time. 
That is why for mapping purposes mostly active vision systems like laser scanners are used , 
e.g. [Thrun et al., 2000], [Wulf & Wagner, 2003], [Surmann et al., 2003]. But these approaches 
are usually not applicable to tasks considering environment dynamics. 
Due to this restriction, 3D cameras [CSEM SA, 2007], [PMDTec, 2007] have attracted 
attention since their invention nearly a decade ago. Distance measurements are also based 
on a time-of-flight principle but with an important difference. Instead of sampling laser 
beams serially to acquire distance data point-wise, the entire scene is measured in parallel 
with a modulated surface. This principle allows for higher frame rates and thus enables the 
consideration of environment dynamics. 
The first part of this chapter discusses the physical principles of 3D sensors, which are 
commonly used in the robotics community for typical problems like mapping and 
navigation. The second part concentrates on 3D cameras, their assets, drawbacks and 
perspectives. Based on these examining parts, some solutions are discussed that handle 
common problems occurring in dynamic environments with changing lighting conditions. 
Finally, it is shown in the last part of this chapter how 3D cameras can be applied to 
mapping, object localization and feature tracking tasks. 
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2. Range Sensing 

Before focusing on 3D cameras and their applications, a short comparison of range sensors 
and their underlying principles is given. Since there are many different types of sensors for 
range sensing, the section focuses on those that are most common in the domain of robotics, 
i.e. stereo vision systems, 3D laser scanners and of course 3D cameras. The section first 
introduces into underlying measurement principles before it describes real sensor systems 
in more detail.  

2.1 Range Measurement Principles 

Different types of sensors are based on different measurement principles. The two main 
principles for technical systems are triangulation and time-of-flight. Both principles can 
further be separated into two subcategories: active and passive triangulation or respectively 
pulsed and phase shifted time-of-flight.  

2.1.1 Triangulation 

This technique is called triangulation since the object whose distance should be measured 
forms a triangle with two parts of the sensor (cf. Figure 1). If the sensor consists of one 
receiver part and one active transmitter part, the measurement principle is called active 
triangulation. If it consists only of two passive receivers, it is called passive triangulation.

Figure 1. Left image: Working principle of active triangulation. Right image: Working 
principle of passive triangulation 

Active triangulation. The configuration of a simple active triangulation sensor can be seen 
in figure 1. A light source projects a single point onto the object and the reflection of the light 
point is measured by the receiver part of the sensor. This receiver is a position sensitive 
device, which can determine the point where the light reflection has hit the receiver. By 
knowing the position of the sensor’s optics, the distance between transmitter and receiver x,
their distance to the optics h and the hitting point of the light reflection x’, it is possible to 
calculate the distance d of the object by the formula: 

'x
xhd ⋅=  (1) 
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Such a simple sensor configuration restricts the distance measurement capability to one 
single point. To determine the shape of an object, either the sensor or the object itself must 
be moved and several measurements have to be taken. Higher sophisticated triangulation 
sensor systems use two-dimensional light sources as well as two-dimensional receivers. 
They project a light pattern onto the object, which is received by, e.g. a 2D camera system.  
Such a system directly provides 3D shape information of the measured objects.  
Passive triangulation.  This principle is well known in nature and has been improved over 
millions of years since it is the basic principle of the human visual sense. Being more precise, 
it is the base of the human depth perception. It consists as well as a technical passive 
triangulation sensor of two receivers (the eyes or two cameras respectively) which are 
observing an overlapping area (cf. figure 1). If a specific point p is in the field of view of both 
receivers, it is possible to determine its distance d to the sensor. Therefore each receiver 
calculates the angle between the line from the sensor to point p and the optical axis of the 
receiver. In combination with the distance x between the two receivers the distance to the 
point p is calculated by  

,

tan

1

tan

1

βα
+

= xd  (2) 

where α is the angle from receiver A to the point p and β is the angle from receiver B to the 
point p. This formula assumes that the optical axes of receiver A and B are parallel. The most 
important task here is to find distinctive points in the images and assign correspondences 
between the points in the two images. Each point in the image of receiver A has to be 
correctly identified in the image of receiver B. Wrong assignments will result in wrong 
distance measurements.  

2.1.2 Time-of-Flight  

As the name already implies, this principle utilizes the time a specific signal needs to travel 
from the sensor to the object and back. For calculating this time, different methods can be 
used. In the following, two of them will be described in more detail, namely the impulse 
time-of-flight method and the phase difference method.  
Impulse Time-of-Flight. This method is the most obvious one, since a timer is started when 
a signal is sent to the object and stopped when its reflection is received. By knowing the 
speed of the signal, the distance to the object can be calculated directly. In practice most 
often a short laser impulse is sent out to the object and the time until it is detected by an 
optical receiver is measured.  
From that travel time t, the distance d can be calculated by the formula 

ctd ⋅= , (3) 

where c is the speed of light. 
Phase difference. A more complex method is the calculation of the travel time by measuring 
the phase difference between the sent signal and its reflection from the object. In principle 
the modulation of light waves itself could be used but since their wavelengths are in the 
range of some nm it would be difficult to determine the phase difference. Therefore the light 
signal is modulated again with a much longer wavelength.  
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Figure 2. Drawing of the phase-difference time-of-flight measurement principle. A 
modulated light signal is split into a reference- and a measurement signal. The measured 
phase-difference gives the time-of-flight of the signal and thus the distance 

As shown in figure 2 the modulated light signal is split into two signals by a semi permeable 
mirror, also called beam splitter. One of the signals, the reference signal, is sent directly to 
the internal receiver which has a distance f to the beam splitter. The other one, the 
measurement signal, is sent to the object which is located at a distance d. When the signal is 
reflected by the object and detected by the internal receiver of the range sensor, it has in total 
covered a distance d’, which is defined by  

)2(' dfd ⋅+= . (4) 

Since the second signal has traveled a longer distance than the reference signal, the phase of 
the incoming signal is different. With this measured phase difference φ  and the wavelength 
of the signal modulation λ , the distance d of the object can be calculated by  

2360

λφ ⋅=d ,  (5) 

where λ  is the wavelength of the signal modulation.  
Since the phase of a modulated signal is periodic with a cycle of 360° or 2π  respectively, it is 
not possible to determine in which cycle of the modulation the measured phase is located. 
This is essential for distance measurement and a real sensor needs to deal with this problem. 
How this can be done is explained in the section 2.2.2. 
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2.2. 3D Laser Scanners 

Laser scanners are very common sensors for range measurement in many fields of 
application and belong to the group of sensors based on the time-of-flight principle. 2D laser 
scanners are being very common in robotic applications since a long period of time. They 
are based on a laser source, a rotating mirror and a photosensitive sensor, whereat the laser 
source and the photosensitive sensor are building a one dimensional time-of-flight range 
sensor. For reaching the second dimension, the mirror deflects the laser beam continuously 
while it is rotating. Such a scanner could scan a circumferential area, but normally it is 
reduced to a smaller angle, e.g., 240°. For many applications where three-dimensional 
objects act in or interact with a three-dimensional environment, a 2D range sensor is not 
sufficient and a 3D sensor is required.  
A 3D laser scanner can be realized in different ways, either the laser signal is deflected in 
two directions by a mirror instead of only one, or one can use more than one laser source 
deflected by a mirror [Ibeo, 2007]. A third option for developing 3D laser scanner was used 
by several groups, e.g. [Fraunhofer IAIS, 2007], [RTS, 2007]. Here commercially available 2D 
laser scanners were pivot-mounted and rotated while they are scanning, which gives three-
dimensional data. Two of them will be described in more detail in the following subsections.  

2.2.1 3DLS – A 3D Laser Scanner  

The 3DLS is based on a SICK 2D laser scanner which is pivot-mounted in the horizontal axis 
[Fraunhofer IAIS, 2007]. This axis is driven by a servo motor to extend the standard scanner 
to a 3D laser scanner. The underlying measurement principle is the Impulse Time-of-Flight.
The laser source is an infrared laser with a wavelength of λ  = 905nm. A maximum field of 
view of 180° horizontal and 124° vertical can be scanned with an angular resolution of 1/4th

degree and a precision of ±15mm. Depending on the chosen resolution, the scan time for a 
full 3D scan can vary from 3.2s for a resolution of 1° to 26.64s for the maximum resolution of 
0.25°. With a size of 284 x 286 x 166mm (width x height x depth) and a weight of 7.4kg the 
3DLS can be used for medium-sized or large mobile robotic systems as well as for stationary 
applications.  

          
Figure 3. Left image: The 3D laser scanner system 3DLS with a SICK LMS291 laser scanner. 
Right image: 3D scan taken with the 3DLS 

The 3DLS is available as indoor and outdoor version, which mainly differ in the operation 
temperature and the maximum range of the scanner. The maximum range is almost 
exclusively limited by the amount of light which is reflected by the measured object. 
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Theoretically, the maximum range of both versions is 80m but with an object reflectivity of 
only 10% (e.g. a black cardboard) the maximum range is specified with 10m for the indoor 
version and 30m for the outdoor version. Another property of the 3DLS which influences 
the quality of the resulting data is the diameter of the sent laser impulse, which signal 
increases over the traveled distance. For the 3DLS, the diameter of the laser impulse 
increased from around 1cm at the beginning to 15cm at a distance of 30m. This causes 
inaccuracies if the laser hits an edge and therefore is partially reflected from different 
distances.  
The result of a 3D laser scan is a 3D point cloud, which can be seen in figure 3. The technical 
data of the 3DLS are summarized in the following table.  

Resolution 721 x 517 scan points (1/4th °) 
Field of view 180° x 124° (hor. x vert.) 
Range 80m (30m with 10% reflectance) 
Frame Rate Up to 1 fps (reduced resolution) 
Dimensions (mm) 284 (W) x 286 (H) x 166 (D)  
Weight 7.4 kg 
Power supply 24V dc 

Table 1. Property table of the Fraunhofer IAIS 3DLS 

2.2.2 A 3D laser scanner based on the Hokuyo URG 

                          
Figure 4. Left image: Hokuyo 3D Scanner. Right image: Scan taken with the Hokuyo 3D 
Scanner. Note that a field of view of 248° is reached by only one rotating servo 

Similar to the 3DLS, this scanner is based on a 2D laser scanner, the Hokuyo URG-04LX 
[Kawata et al., 2005], [Hokuyo Automatic, 2007]. Since it is very small and light weighted it 
is directly mounted on a servo drive to get the additional rotation axis. By using a pan-tilt-
head (cf. figure 4), different scanning setups are possible. In difference to the 3DLS, this 
scanner measures the range by using the phase difference principle. For generating the 
modulated light signal, an infrared laser diode with a wavelength of λ  = 785nm is used. As 
described in chapter 2.1.2 it is not possible to detect if the measured phase difference is more 
than one cycle period and therefore out of the maximum measurement range. To handle 
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that problem, two laser signals with different modulation frequencies are emitted 
alternately. Both phase differences are measured separately and used for determining the 
real distance of the measured object.  
The maximum apex angle of this 3D laser scanner is 270° horizontally and 248° vertically 
with a resolution of 0.36°. Depending on the measured distance, the precision is at least ±2% 
of the distance. A full resolution scan takes 50 seconds. The technical data are summarized 
in the following table.  

Resolution 1000 x 667 scan points (0.36°) 
Field of view 270° x 248° (hor. x vert.) 
Range 4,095m  
Frame Rate 0,02 fps (full resolution) 
Dimensions (mm) 80 (W) x 120 (H) x 75 (D) 
Weight 350 g 
Modulation frequencies 46.55 MHz and 53.2 MHz 

Table 2. Property table of the Hokuyo URG based 3D laser scanner 

2.3. 3D Cameras 

These devices belong to the group of time-of-flight sensors. They use the phase-shift 
principle to determine distances. While the environment is being illuminated with infrared 
flashes, the reflected light is measured by a CCD- or CMOS-sensor or a combined 
technology. Amplitude data is represented by the incoming wave’s amplitude, intensity by 
its offset (i.e. the background light) and distance by its phase shift. For the experiments in 
section 4, we have used a SwissRanger SR-2 device that can be seen in figure 5. 

       
Figure 5. Left image: SwissRanger SR-2 device mounted on a pan-tilt unit. Right image: 
Sample image captured from a SwissRanger SR-2 device. The image is color coded (see color 
bar on the right side) 

The SwissRanger SR-2 provides amplitude data, intensity data and distance data. All 
measurements are being organized by a FPGA, which provides an USB interface to access 
the data. The FPGA can be configured by setting one or more of its eleven registers. The 
most important register concerns the adjustment of the integration time, since the SR-2 does 
not provide an automatic integration time controller by itself (the follow-up model SR-3000 
does). It ranges from 1 to 255, which are multiples of 255 μs. Finding the optimal value will 
be investigated in section 3.2. 
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Please pay some attention on table 3 and compare it with table 1. The comparison of the 
SwissRanger SR-2 and the Sick LMS device is important for the experiment in section 4.1. 

Resolution 124 x 160 
Field of view 43˚ x 46˚ (hor. x vert.) 
Range 7.5 m 
Frame Rate Up to 30 fps 
Dimensions (mm) 135 (W) x 45 (H) x 32 (D) 
Weight 0.2 kg 

Table 3. Property table of the SwissRanger SR-2 device 

2.4. Stereo Cameras 

Stereo vision is a mature technology in computer vision. Depth-measurements with stereo 
cameras have been investigated since decades, e.g. [Lucas & Kanade, 1981]. There are also 
lots of pre-calibrated systems available, but this technology still needs a great deal of 
performance since point correspondences from the left and the right image have to be found 
for enabling the calculation of depth information. For homogeneous regions it is difficult to 
find the correct correspondences. If these regions are bounded by unambiguous features, i.e. 
textured regions or edges and borders respectively an iteration scheme can be used to relax 
the correspondences of these features over the whole image. Otherwise there is no way to 
calculate any depth information. That is why related techniques have difficulties providing 
reliable navigation or mapping information for a mobile robot in real-time and like all 
passive visual sensors, they are difficult to handle in real world environments with 
changing light conditions. Due to this drawback, this chapter discusses not any passive 
visual sensor system any further. 

3. 3D Cameras – A Step forward in Computer Vision 

This section discusses the technology of 3D cameras more detailed since it has the 
application potential for tackling dynamics in the field of 3D computer vision. For the 
investigations following below the SwissRanger SR-2 was used.  

3.1. Challenges and Limitations 

The adjustment of 3D cameras to dynamic scenes is still a difficult task. The accuracy is 
influenced by a couple of parameters. Some of them are predefined by the design of 
hardware and cannot be influenced by the user. Anyway, these parameters should be 
mentioned in this section to facilitate the understanding for the presented effects in the 
remainder of this chapter. 
First of all, the accuracy is proportional to the modulation frequency. Doubling the 
frequency doubles the accuracy. But the frequency also determines the unambiguous range, 
which can be seen in equation (6).  

,
2 mf

cR
⋅

=  (6) 

where R is the unambiguity interval, c the speed of light and fm the modulation frequency.  
A camera with a frequency of 20 MHz provides an unambiguous range of 7.5 m. A lower 
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frequency provides a higher range but less accuracy. To satisfy both criteria multiple 
frequencies can be used. For instance, this technology is currently used by the 
PMD[vision]® A2 from PMDTec. 
Since the principle is based on integrating discharged electrons from incoming light, the 
optical power also influences the reachable accuracy. These electrons are collected within a 
conversion capacity, which can result in oversaturation, if the integration time is too high 
[Lange, 2000]. Both mentioned manufacturers in this chapter use a burst mode to increase 
the power output for short intervals at the same energy level over time. 
For an application, the best measurement capability has to be adjusted by the integration 
time. This value has to be high enough to provide a high signal level, but low enough to 
avoid oversaturation. Oversaturation is indicated by both, the intensity and the amplitude 
data. Theoretically the relation between intensity and amplitude is constant as shown in 
figure 6, but unfortunately it shows a small deviation due to a non-ideal sinusoidal wave 
emitted by the sensor’s LEDs [Lange, 2000]. 

Figure 6. Relation between intensity and amplitude data of the SwissRanger SR-2 device in 
dependency of the integration time. Note that a higher integration time is also indicated by a 
higher intensity value. The amplitude is raising linearly until oversaturation occurs 

There are also a number of other noise sources which theoretically influence the reachable 
accuracy. It is out of the scope of this chapter to explain all noise effects. A good 
theoretically work explaining them in detail can be found in [Lange, 2000]. This work also 
describes the dominance of shot noise that cannot be suppressed and, therefore, limits the 
theoretically reachable signal-to-noise ratio and the accuracy involved. Hence, the standard 
deviation R is approximately given as:

,
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where A is the amplitude and I the intensity. The intensity value is composed of the 
reflected constant component Il of the LED illumination and the background illumination Ib.
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As a rule, it can be said that the proper saturation of a pixel’s capacitance provides its best 
accuracy. The emitted light is uniformly distributed (only approximately, see [Gut, 2004]) on 
a surface proportional to the quadratic distance. Therefore, the reflected intensity is also 
proportional to the quadratic distance, whereas the received background light (caused by 
sunlight) is independent of it [Schneider, 2003]. For both constituent parts the standard 
deviation yields a different dependency on the object’s distance. If one of these components 
is dominant the standard deviation has the following characteristic1:
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For indoor applications with less background illumination case one can be assumed. This 
relation will be relevant for the experiments mentioned below. 

3.2. Tackling Environment Dynamics 

Figure 7 shows the same scene taken twice with the SwissRanger SR-2 device at two 
different integration times. The integration time for the measurement shown in the left 
figure was not adjusted properly with respect to the near object. The bothered area of the 
hand indicates that effect. But this measurement might provide better values in the 
background area.  

Figure 7. Two sample distance measurements of a close hand in false color representation. 
The left measurement was taken with an integration time of 15 ms, which is definitely too 
high for the near object. The right measurement was taken with an integration time of 4 ms 
and fits better for that scene 

3.2.1 Setting up the integration time 

The diffuse reflectivity of objects is an important parameter for precise measurements. 
Typically, a scene comprises objects with different reflectivity. It can vary from 2% for black 
rubber tire up to 100% for white paper at a wavelength of 900nm [Lange, 2000]. Let us 
assume scenarios containing only a small single object with high reflectance close to the 
sensor to explain the compromise that has to be met. Since the integration time can only be 
                                                                
1 Note that also the amplitude has a quadratic dependency on the distance. 
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adjusted for all pixel elements together, one might guess that it is the best strategy to avoid 
each pixel from oversaturation. Focusing the small object will most likely decrease the 
accuracy for the remaining scene. This also means, that the signal level for objects with low 
diffuse reflectivity will be low if objects with high reflectivity are in the same range of vision 
during measurement. 
One suitable method is to merge multiple captures at different integration times. It reduces 
the frame rate but increases the dynamic range. 
In [May, 2006] we have presented an alternative integration time controller based on mean 
intensity measurements. This solution was empirically found and showed a suitable 
dynamic range for our experiments without affecting the frame rate. It also alleviates the 
effects of small bothering areas. The averaged amplitude in dependency of intensity can be 
seen in figure 8. 

Figure 8. Relation between mean amplitude and mean intensity. Note that the characteristic 
is now a mixture of the characteristic of each single pixel (cf. figure 6) 

We used a proportional closed-loop controller to adjust the integration time from one frame 
to the next as shown in the following itemization. 
The control deviation variable Ia was assigned with a value of 15000 for the illustrations in 
this chapter. It has been chosen conservatively with respect to the characteristic shown in 
figure 8. 
1. Calculate the mean intensity tI from the intensity dataset It at time t.

2. Determine control deviation att IID −= .
3. Update control variable ttpt cDVc +⋅−=+1  for grabbing the next frame, where ct and ct+1

are the integration times for two frames following one another, Vp the proportional 
closed loop deviation parameter and c0 a suitable initial value. 

Independent of the chosen control method, the integration time has always to be adjusted 
with respect to the application. A change of integration time causes an apparent motion 
considering the distance measurement values. Therefore, it is necessary for the application 
to take the presence of control deviation into account while using an automatic integration 
time controller. 
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The newest model from Mesa Imaging, the SwissRanger SR-3000 provides an automatic 
integration time exposure based on the amplitude values. For most scenes it works properly. 
In some cases of fast scene change it could occur that a proper integration time cannot be 
found. This is up to the missing intensity information due to the backlight suppression on 
chip. The amplitude diagram does not provide a non-ambiguous working point. A short 
discussion on the backlight suppression will be given in section 3.3. 

3.2.2 Consideration of accuracy 

It is not possible to guarantee certain accuracies for measurements of unknown scenes, since 
they are affected by the influences mentioned above. However, the possibility to evolve the 
accuracy information for each pixel eases that circumstance. In section 4 two examples using 
this information will be explained. For determining the accuracy equation (7) is used. 
Assuming that the parameters of the camera (in general this is the integration time for users) 
are optimally adjusted, the accuracy only depends on the object’s distance and its 
reflectivity. For indoor applications with less background illumination, the accuracy is 
linearly decreasing (see equation (8)). Applying a simple threshold is one option for filtering 
out inaccurate parts of an image. Setting a suitable threshold primarily depends on the 
application. Lange stated with respect to the dependency between accuracy and distance 
[Lange, 2000]: “This is an important fact for navigation applications, where a high accuracy 
is often only needed close to the target“. This statement does not hold for every other 
application like mapping, where unambiguousness is essential for registration. 
Unambiguous tokens are often distributed over the entire scene. Higher distances between 
these tokens provide geometrically higher accuracies for the alignment of two scans. After 
this consideration, increasing the threshold linearly with the distance for indoor applications 
suggests itself. This approach enlarges the information gain from the background and can 
be seen in figure 9. 
A light source in the scene decreases the reachable accuracy. The influence of the accuracy 
threshold can be seen in figure 10. Bothered areas are reliably removed. The figure shows 
also that the small bothering area of the lamp does not much influence the integration time 
controller based on mean intensity values, even so that the surrounding area is determined 
precisely. 

      
Figure 9. Two images taken with a SwissRanger SR-2 device of the same scene. Left image: 
without filtering. Right image: with accuracy filter. Only data points with an accuracy better 
than 50mm are remaining 
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Figure 10. Influence of light emitting sources. Top row: The light source is switched off. 
Lower Row: The light source is switched on. Note that the bothered area could reliably be 
detected 

3.3. Latest Improvements and expected Innovations in Future 

Considering equation (7) a large background illumination (Ib >> Il) highly affects the 
sensor’s accuracy by increasing the shot noise and lowering its dynamics. Some sensors 
nowadays are equipped with some background light suppression functionalities, e.g. 
spectral filters or circuits for constant component suppression, which are increasing the 
signal-to-noise ratio [Moeller et al., 2005], [Buettgen et al., 2006].  
Suppressing the background signal has one drawback. The amplitude represents the 
infrared reflectivity and not the reflectivity we sense as human-beings. This might take 
effects on computer vision systems inspired by our human visual sense, e.g. [Frintrop, 2006]. 
Some works in the past had also proposed a circuit structure for a pixel-wise-integration 
capability [Schneider, 2003], [Lehmann, 2004]. Unfortunately, this technology did not 
become widely accepted due to a lower fill-factor. Lange explained the importance of the 
optical fill factor as follows [Lange, 2000]: “The optical power of the modulated illumination 
source is both expensive and limited by eye-safety regulations. This requires the best 
possible optical fill factor for an efficient use of the optical power and hence a high 
measurement resolution.” 

4. 3D Vision Applications 

This section investigates the practical influence of upper mentioned thoughts by presenting 
some typical applications in the domain of autonomous robotics currently investigated by 
us. Since 3D cameras are comparatively new to other 3D sensors like laser scanners or stereo 
cameras, the porting of algorithms defines a novelty per se; e.g. one of the first 3D maps 
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created with registration approaches mostly applied to laser scanner systems up to now was 
presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems in 
2006 [Ohno, 2006]. The difficulties to come across with these sensors are discussed in this 
section. Furthermore, a first examination on the capabilities for tackling environment 
dynamics will follow. 

4.1. Registration of 3D Measurements 

One suitable registration method for range data sets is called the Iterative Closest Points 
(ICP) algorithm and was introduced by Besl and McKay in 1992 [Besl & McKay, 1992]. For 
the readers convenience a brief description of this algorithm is repeated in this section. 
Given two independently acquired sets of 3D points, M (model set) and D (data set), which 
correspond to a single shape, we aim to find the transformation consisting of a rotation R
and a translation t which minimizes the following cost function: 
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i,j is assigned 1 if the i-th point of M describes the same point in space as the j-th point of D.
Otherwise i,j is 0. Two things have to be calculated: First, the corresponding points, and 
second, the transformation (R,t) that minimizes E(R,t) on the base of the corresponding 
points. The ICP algorithm calculates iteratively the point correspondences. In each iteration 
step, the algorithm selects the closest points as correspondences and calculates the 
transformation (R,t) for minimizing equation (9). The assumption is that in the last iteration 
step the point correspondences are correct. Besl and McKay prove that the method 
terminates in a minimum [Besl & McKay, 1992]. However, this theorem does not hold in our 
case, since we use a maximum tolerable distance dmax for associating the scan data. Such a 
threshold is required though, given that 3D scans overlap only partially. The distance and 
the degree of overlapping have a non-neglective influence of the registration accuracy. 

4.2. 3D Mapping – Invading the Domain of Laser Scanners 

The ICP approach is one upon the standard registration approaches used for data from 3D 
laser scanners. Since the degree of overlapping is important for the registration accuracy, the 
huge field of view and the high range of laser scanners are advantages over 3D cameras 
(compare table 1 with table 3). The following section describes our mapping experiments 
with the SwissRanger SR-2 device. 
The image in figure 11 shows a single scan taken with the IAIS 3D laser scanner. The scan 
provides a 180 degree field of view. Getting the entire scene into range of vision can be done 
by taking only two scans in this example. Nevertheless, a sufficient overlap can be 
guaranteed to register both scans. Of course there are some uncovered areas due to 
shadowing effects, but that is not the important fact for comparing the quality of 
registration. A smaller field of view makes it necessary to take more scans for the coverage 
of the same area within the range of vision. The image in figure 12 shows an identical scene 
taken with a SwissRanger SR-2 device. There were 18 3D images necessary for a 
circumferential view with sufficient overlap. Each 3D image was registered with its 
previous 3D image using the ICP approach. 
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Figure 11. 3D scan taken with an IAIS 3D laser scanner 

Figure 12. 3D map created from multiple SwissRanger SR-2 3D images. The map was 
registered with the ICP approach. Note the gap at the bottom of the image, that indicates the 
accumulating error 

4.2.1. “Closing the Loop” 

The registration of 3D image sequences causes a non-neglective accumulation error. This 
effect is represented by the large gap at the bottom of the image in figure 12. These effects 
have also been investigated in detail for large 3D maps taken with 3D laser scanners, e.g. in 
[Surmann et al., 2004], [Cole & Newman, 2006]. For a smaller field of view these effects 
occur faster, because of the smaller size of integration steps. Determining the closure of a 
loop can be used in these cases to expand the overall error on each 3D image. This implies 
that the present captured scene has to be recognized to be already one of the previous 
captured scenes. 
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4.2.2. “Bridging the Gap“ 

The second difficulty for the registration approach is that a limited field of view makes it 
more unlikely to measure enough unambiguous geometric tokens in the space of distance 
data or even sufficient structure in the space of grayscale data (i.e. amplitude or intensity). 
This issue is called the aperture problem in computer vision. It occurs for instance for 
images taken towards a huge homogeneous wall (see [Spies et al., 2002] for an illustration). 
In the image of figure 12 the largest errors occurred for the images taken along the corridor. 
Although points with a decreasing accuracy depending on the distance (see section 3.2.2) 
were considered, only the small areas at the left and the right border contained some fairly 
accurate points, which made it difficult to determine the precise pose. This inaccuracy is 
mostly indicated in this figure by the non-parallel arrangement of the corridor walls. The 
only feasible solution to this problem is a utilization of different perspectives. 

4.3. 3D Object Localization 

Object detection is a highly investigated field of research since a very long period of time. A 
very challenging task here is to determine the exact pose of the detected objects. Either this 
information is just implicitly available since the algorithm is not very stable against object 
transformations or the pose information is explicit but not very precise and therefore not 
very reliable. For reasoning about the environment it may be enough to know which objects 
are present and where they are located but especially for manipulation tasks it is essential to 
know the object pose as precise as possible. Examples for such applications are ranging from 
“pick and place” tasks of disordered components in industrial applications to handling task 
of household articles in service-robotic applications.  
In comparison to color camera based systems the use of 3D range sensors for object 
localization provide much better results regarding the object pose. For example Nuechter et 
al. [Nuechter et al., 2005] presented a system for localizing objects in 3D laser scans. They 
used a 3D laser scanner for the detection and localization of objects in office environments. 
Depending on the application one drawback of this approach is the time consuming 3D 
laser scan which needs at least 3.2 seconds for a single scan (cf. table 1).  Using a faster 3D 
range sensor would increase the timing performance of such a system essentially and thus 
open a much broader field of applications.  
Therefore Fraunhofer IAIS is developing an object localization system which uses range data 
from a 3D camera. The development of this system is part of the DESIRE research project 
which is founded by the German Federal Ministry of Education and Research (BMBF) under 
grant no. 01IME01B. It will be integrated into a complex perception system of a mobile 
service-robot. In difference to the work of Nuechter et al. the object detection in the DESIRE 
perception system is mainly based on information from a stereo vision system since many 
objects are providing many distinguishable features in their texture. With the resulting 
hypothesis of the object and it’s estimated pose a 3D image of the object is taken and 
together with the hypothesis it is used as input for the object localization.  
The localization itself is based on an ICP based scan matching algorithm (cf. section 4.1). 
Therefore each object is registered in a database with a point cloud model. This model is 
used for matching with the real object data. For determining the pose, the model is moved 
into the estimated object pose and the ICP algorithm starts to match the object model and 
the object data. The real object pose is given by a homogeneous transformation. Using this 
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object localization system in real world applications brings some challenges, which are 
discussed in the next subsection. 

4.3.1 Challenges  

The first challenge is the pose ambiguities of many objects. Figure 13 shows a typical object 
for a home service-robot application, a box of instant mashed potatoes. The cuboid shape of 
the box has three plains of symmetry which results in the ambiguities of the pose. 
Considering only the shape of the object, very often the result of the object localization is not 
a single pose but a set of possible poses, depending on the number of symmetry planes. For 
determining the real pose of an object other information than only range data are required, 
for example the texture. Most 3D cameras additionally providing gray scale images which 
give information about the texture but with the provided resolution of around 26.000 pixels 
and an aperture angle of around 45° the resolution is not sufficient enough for stable texture 
identification. Instead, e.g., a color camera system can be used to solve this ambiguity. This 
requires a close cooperation between the object localization system and another 
classification system which uses color camera images and a calibration between the two 
sensor systems. As soon as future 3D cameras are providing higher resolutions and maybe 
also color images, object identification and localization can be done by using only data from 
a 3D camera.

Figure 13. An instant mashed potatoes box. Because of the symmetry plains of the cuboid 
shape the pose determination gives a set of possible poses. Left: Colour image from a digital 
camera. Right: 3D range image from the Swissranger SR-2 
Another challenge is close related to the properties of 3D cameras and the resulting ability to 
provide precise range images of the objects. It was shown that the ICP based scan matching 
algorithm is very reliable and precise with data from a 3D laser scanner, which are always 
providing a full point cloud of the scanned scene [Nuechter, 2006], [Mueller, 2006]. The 
accuracy is static or at least proportional to the distance. As described in section 3.2.2 the 
accuracy of 3D camera data is influenced by several factors. One of these factors for example 
is the reflectivity of the measured objects. The camera is designed for measuring diffuse 
light reflections but many objects are made of a mixture of specular and diffuse reflecting 
materials. Figure 14 shows color images from a digital camera and range images from the 
Swissrange SR-2 of a tin from different viewpoints. The front view gives reliable range data 
of the tin since the cover of the tin is made of paper which gives diffuse reflections. In the 
second image the cameras are located a little bit above and the paper cover as well as high 
reflecting metal top is visible in the color image. The range image does not show the top 
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since the calculated accuracy of these data points is less than 30 mm. This is a loss of 
information which highly influences the result of the ICP matching algorithm.   

Figure 14. Images of a tin from different view points. Depending on the reflectivity of the 
objects material the range data accuracy is different. In the range images all data points with 
a calculated accuracy less than 30mm are rejected. Left: The front view gives good 3D data 
since the tin cover reflects diffuse. Middle: From a view point above the tin, the cover as 
well as the metal top is visible. The high reflectivity of the top results in bad accuracy so that 
only the cover part is visible in the range image. Right: From this point of view, only the 
high metal top is visible. In the range image only some small parts of the tin are visible 

4.4. 3D Feature Tracking 

Using 3D cameras to full capacity necessitates taking advantage of their high frame rate. 
This enables the consideration of environment dynamics. In this subsection a feature 
tracking application is presented to give an example of applications that demand high frame 
rates. Most existing approaches are based on 2D grayscale images from 2D cameras since 
they were the only affordable sensor type with a high update rate and resolution in the past.  
An important assumption for the calculation of features in grayscale images is called 
intensity constancy assumption. Changes in intensity are therefore only caused by motion. 
The displacement of two images is also called optical flow. An extension to 3D can be found 
in [Vedula et al., 1999] and [Spies et al., 2002]. The intensity constancy assumption is being 
combined with a depth constancy assumption. The displacement of two images can be 
calculated more robustly. This section will not handle scene flow. However the depth value 
of features in the amplitude space should be examined so that the following two questions 
are answered: 
• Is the resolution and quality of the amplitude images from 3D cameras good enough to 

apply feature tracking kernels? 
• How stable is the depth value of features gathered in the amplitude space? 
To answer these questions a Kanade-Lucas-Tomasi (KLT) feature tracker is applied [Shi, 
1994]. This approach locates features considering the minimum eigenvalue of each 2x2 
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gradient matrix. Tracking features frame by frame is done by an extension of previous 
Newton-Raphson style search methods. The entire approach also considers multi-resolution 
to enlarge possible displacements between the two frames. Figure 15 shows the result of 
calculating features in two frames following one another. Features in the present frame (left 
feature) are connected with features from the previous frame (right feature) with a thin line. 
The images in figure 15 show that many edges in the depth space are associated with edges 
in the amplitude space. The experimental standard deviation for that scene was determined 
by taking the feature’s mean depth value of 100 images. The standard deviation was then 
calculated from 100 images of the same scene. These experiments have been performed two 
times, first without a threshold and second with an accuracy threshold of 50mm (cf. formula 
7). The results are shown in table 4 and 5. 

Experimental standard deviation  = 0.053m, Threshold R = 

Feature # Considered Mean Dist 
[m]

Min Dev 
[m]

Max Dev 
[m]

1 Yes -2.594 -0.112 0.068 
2 Yes -2.686 -0.027 0.028 
3 Yes -2.882 -0.029 0.030 
4 Yes -2.895 -0.178 0.169 
5 Yes -2.731 -0.141 0.158 
6 Yes -2.750 -0.037 0.037 
7 Yes -2.702 -0.174 0.196 
8 Yes -2.855 -0.146 0.119 
9 Yes -2.761 -0.018 0.018 
10 Yes -2.711 -0.021 0.025 

Table 4. Distance values and deviation of the first ten features calculated from the scene 
shown in the left image of figure 15 with no threshold applied 

Experimental standard deviation  = 0.017m, Threshold R = 50mm 

Feature # Considered Mean Dist 
[m]

Min Dev 
[m]

Max Dev 
[m]

1 Yes -2.592 -0.110 0.056 
2 Yes -2.684 -0.017 0.029 
3 Yes -2.881 -0.031 0.017 
4 No -2.901 -0.158 0.125 
5 Yes -2.733 -0.176 0.118 
6 Yes -2.751 -0.025 0.030 
7 No -2.863 -0.185 0.146 
8 No -2.697 -0.169 0.134 
9 Yes -2.760 -0.019 0.015 
10 Yes -2.711 -0.017 0.020 

Table 5. Distance values and deviation of the first ten features calculated from the scene 
shown in the left image of figure 15 with a threshold of 50mm
The reason for the high standard deviation is the noise criterion for edges. The signal 
reflected by an edge is a mixture of the background and object signal. A description of this 
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effect is given in [Gut, 2004]. Applying an accuracy threshold alleviates this effect. The 
standard deviation is decreased significantly. This approach has to be balanced with the 
number of features found in an image. Applying a more restrictive threshold might decrease 
the number of features too much. For the example described in this section an accuracy 
threshold of R = 10mm decreases the number of features to 2 and the experimental 
standard deviation  to 0.01m.

      
Figure 15. Left image: Amplitude image showing the tracking of KLT-features from two 
frames following one another. Right image: Side view of a 3D point cloud. Note the 
appearance of jump edges at the border area 

5. Summary and Future work 

First of all, a short comparison of range sensors and their underlying principles was given. 
The chapter further focused on 3D cameras. The latest innovations have given a significant 
improvement for the measurement accuracy, wherefore this technology has attracted 
attention in the robotics community. This was also the motivation for the examination in this 
chapter. On this account, several applications were presented, which represents common 
problems in the domain of autonomous robotics. 
For the mapping example of static scenes, some difficulties have been shown. The low 
range, low apex angle and low dynamic range compared with 3D laser scanners, raised a lot 
of problems. Therefore, laser scanning is still the preferred technology for this use case. 
Based on the first experiences with the Swissranger SR-2 and the ICP based object 
localization, we will further develop the system and concentrate on the reliability and the 
robustness against inaccuracies in the initial pose estimation. Important for the reliability is 
knowledge about the accuracy of the determined pose. Indicators for this accuracy are, e.g., 
the number of matched points of the object data or the mean distance between found model-
scene point correspondences.  
The feature tracking example highlights the potential for dynamic environments. Use cases 
with requirements of dynamic sensing are predestinated for 3D cameras. Whatever, these 
are the application areas 3D cameras were once developed. 
Our ongoing research in this field will concentrate on dynamic sensing in future. We are 
looking forward to new sensor innovations! 
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1. Introduction 

Over the past decades, there are tremendous researches on mobile robots aiming at 
increasing autonomy of mobile robot systems. As a basic problem in mobile robots, self-
localization plays a key role in various autonomous tasks (Kortenkamp et al., 1998). 
Considerable researches have been done on self-localization of mobile robots (Borenstein et 
al., 1996; Chenavier & Crowley, 1992; Jensfelt & Kristensen, 2001; Tardos et al., 2002), with 
the goal of estimating the robot’s pose (position and orientation) by proprioceptive sensors 
and exteroceptive techniques. Since proprioceptive sensors (e.g., dead-reckoning) are 
generally not sufficient to locate a mobile robot, exteroceptive techniques have to be used to 
estimate the robot’s configuration more accurately. Some range sensors such as sonar 
sensors (Drumheller, 1987; Tardos et al., 2002; Wijk & Christensen, 2000) and laser range 
finders (Castellanos & Tardos, 1996), can be employed for the robot localization. However, 
the data obtained from sonar sensors is usually noisy due to specular reflections, and the 
laser scanners are generally expensive. As a result, other sensory systems with more reliable 
sensing feedback and cheaper price, such as visual sensors (Chenavier & Crowley, 1992; 
Dellaert et al., 1999; Gaspar et al., 2000), are more demanded for mobile robot localization. 
Probabilistic localization algorithm (Chenavier & Crowley, 1992; Fox et al., 1999b; 
Nourbakhsh et al., 1995) is a useful systematic method in sensor-based localizations, 
providing a good framework by iteratively updating the posterior distribution of the pose 
space. As a state estimation problem, pose estimation with linear Gaussian distribution 
(unimodal) can be done by Kalman filters for pose tracking (Chenavier & Crowley, 1992; 
Leonard & Durrant-White, 1991), which exhibits good performance under the condition that 
the initial robot pose is known. Nonlinear non-Gaussian distribution (multimodal) problem 
can be solved by multi-hypothesis Kalman filters (Jensfelt & Kristensen, 2001) or Markov 
methods (Fox et al., 1999b; Nourbakhsh et al., 1995) for global localization. The multi-
hypothesis Kalman filters use mixtures of Gaussians and suffer from drawbacks inherent 
with Kalman filters. Markov methods employ piecewise constant functions (histograms) 
over the space of all possible poses, so the computation burden and localization precision 
depend on the discretization of pose space.  
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By representing probability densities with sets of samples and using the sequential Monte 
Carlo importance sampling, Monte Carlo localization (MCL) (Dellaert et al., 1999; Fox et al., 
1999a) represents non-linear and non-Gaussian models with great robustness and can focus 
the computational resources on regions with high likelihood. Hence MCL has attracted 
considerable attention and has been applied in many robot systems. MCL shares the similar 
idea to that of particle filters (Doucet, 1998) and condensation algorithms (Isard & Blake, 
1998) in computer vision. 
As a sample based method with stochastic nature, MCL can suffer from the observation 
deviation or over-convergence problem when the sample size is smaller or encountering 
some poorly modeled events (to be discussed in detail in Section 2.2) (Carpenter et al., 1999; 
Thrun et al., 2001). Many approaches have been proposed to improve the efficiency of MCL 
algorithm. A method of adaptive sample size varying in terms of the uncertainty of sample 
distribution, was presented in (Fox, 2003). However, the sample size of this method must 
meet a condition of an error bound of the distribution, which becomes a bottleneck for a real 
global localization. A resampling process through introduction of a uniform distribution of 
samples was further applied for the case of non-modeled movements (Fox et al., 1999a). 
Likewise, a sensor resetting localization algorithm (Lenser & Veloso, 2000) was also 
implemented using a resampling process from visual feedback, based on an assumption that 
the visual features with range and bearing are distinguishable. Such a method may be 
applicable to RoboCup, but not to a general office environment. Several other visual based 
Monte Carlo methods (Kraetzschmar & Enderle, 2002; Rofer & Jungel, 2003) were 
implemented under the condition that the environment features must be unique. A mixture 
MCL (Thrun et al., 2001) and condensation with planned sampling (Jensfelt et al., 2000) 
incorporated the resampling process to MCL for efficiency improvement, which require fast 
sampling rate from sensors every cycle. 
In order to achieve higher localization precision and improve efficiency of MCL, a new 
approach to extended Monte Carlo localization (EMCL) algorithm is presented here. The 
basic idea is to introduce two validation mechanisms to check the abnormity (e.g., 
observation deviation and over-convergence phenomenon) of the distribution of weight 
values of sample sets and then employ a resampling strategy to reduce their influences. 
According to the verification, the strategy of employing different resampling processes is 
employed, in which samples extracted either from importance resampling or from 
observation model form the true posterior distribution. This strategy can effectively prevent 
from the premature convergence and be realized with smaller sample size. A visual-based 
extended MCL is further implemented. The common polyhedron visual features in office 
environments are recognized by Bayesian network that combines perceptual organization 
and color model. This recognition is robust with respect to individual low-level features and 
can be conveniently transferred to similar environments. Resampling from observation 
model is achieved by the triangulation method in the pose constraint region.   
The remainder of this chapter is organized as follows. Section 2 introduces conventional 
MCL algorithm and discusses the existing problems when applied to the real situations. 
Section 3 proposes the extended MCL (EMCL) with brief implementation explanations 
showing the difference from conventional MCL, which is followed by the implementation 
details of a visual-based EMCL application example in Section 4. Section 5 presents 
experiments conducted on a mobile robot system to verify the proposed approach. Finally, 
conclusions of this work are given in Section 6. 
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2. Conventional Monte Carlo Localization 

2.1 Conventional MCL

Monte Carlo localization (MCL) (Dellaert et al., 1999; Fox et al., 1999a) is a recursive 
Bayesian filter that estimates the posterior distribution of robot poses conditioned on 
observation data, in a similar manner to Kalman filters (Chenavier & Crowley, 1992) and 
Markov methods  (Fox et al., 1999b; Nourbakhsh et al., 1995). The robot’s pose is specified 
by a 2D Cartesian position kx  and ky , and a heading angle kθ , where k denotes the index of 
time sequences. It is assumed that the environment is Markov when using Bayesian filters, 
that is, the past and the future data are (conditionally) independent if one knows the current 
state. The iterative Markov characteristic of Bayesian filters provides a well probabilistic 
update framework for all kinds of probability-based localization algorithms. 
MCL is implemented based on SIR (Sampling/Importance Resampling) algorithm 
(Carpenter et al., 1999; Doucet, 1998) with a set of weighted samples. For the robot pose 

[ ]Tkkkk yxX θ= , define the sample set as follows: 

},,1|,{ )()()(

k
i

k
i

k
i

kk NiwXsS =>=<=

where the sample )(i
ks  consists of the robot pose )(i

kX  and the weight )(i
kw  that represents 

the likelihood of )(i
kX , i is the index of weighted samples, and kN  denotes the number of 

samples (or sample size). It is assumed that 
=

=kN

i
i

kw
1

)( 1 , since the weights are interpreted 

as probabilities. 
During the localization process, MCL is initialized with a set of samples reflecting initial 
knowledge of the robot’s pose. It is usually assumed that the distribution is uniform for 
global localization when the initial pose is unknown, and a narrow Gaussian distribution 
when the initial pose is known. Then samples are recursively updated with the following 
three steps executed (see Table 1).
Step 1: Sample update with robot motion (prediction step) 
The probabilistic proposal distribution of robot pose in the motion update is 

)(),|( 111 −−− ×= kkkkk XBeluXXpq  (1) 

where ),|( 11 −− kkk uXXp  denotes probabilistic density of the motion that takes into account 

the robot properties such as drift, translational and rotational errors, 

[ ]Tkkkk yxu 1111 −−−− ΔΔΔ= θ  denotes variation of the robot pose at time k-1, and )( 1−kXBel
denotes posterior distribution of the robot pose 1−kX . Then, extract a new sample set kS ′

with >< )()(
,

i
k

i
k wX  from the proposal distribution kq , by applying the above motion update to 

the posterior distribution, where )(i
kX   and )(i

kw  denote the extracted pose and weight after 

motion update, respectively.

Step 2: Belief update with observations (sensor update step) 
Robot’s belief about its pose is updated with observations, mostly from range sensors. 
Introduce a probabilistic observation model )|(

)(i
kk XZp , where kZ  denotes measurements 
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from the sensor. Re-weight all samples of kS ′  extracted from the prediction step, and we 
then have 

Algorithm Conventional MCL
Prediction step: 

for each 
kNi ,,1=
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1−kS  according to (1) 
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Resampling step (importance resampling): 
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end for 
for each 
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r=rand(0,1);                                               {random number r} 
j=1
while( kN≤j ) do    
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end while 
end for 

Table 1. Conventional MCL algorithm 
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where )(ˆ i
kw  denotes the non-normalized weight during the sensor update. 

Normalize weights as follows to ensure that all beliefs sum up to 1: 
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Then, the sample set after sensor update, denoted by kS ′′  with >< )()( ~, i
k

i
k wX , is obtained. 

The observation model )|(
)(i

kk XZp  is also named as importance factor (Doucet, 1998), 

which reflects the mismatch between the probabilistic distribution kq  after the prediction 
step and the current observations from the sensor.
Step 3: Resampling step 
The resampling step is to reduce the variance of the distribution of weight values of samples 
and focus computational resources on samples with high likelihood. A new sample set kS
is extracted with samples located nearby the robot true pose. This step is effective for 
localization by ignoring samples with lower weights and replicating those with higher 
weights. The step is to draw samples based on the importance factors, and is usually called 
importance resampling (Konolige, 2001). The implementation of such importance 
resampling is shown in Table 1. 

2.2 Problems of Conventional MCL 

When applied to the real situations, conventional MCL algorithm suffers from some 
shortcomings. The samples are actually extracted from a proposal distribution (here is the 
motion model). If the observation density deviates from the proposal distribution, the (non-
normalized) weight values of most of the samples become small. This leads to poor or even 
erroneous localization result. Such phenomenon results from two possible reasons. One is 
that too small sample size is used, and the other is due to poorly modeled events such as 
kidnapped movement (Thrun et al., 2001). To solve the problem, either a large sample size is 
employed to represent the true posterior density to ensure stable and precise localization, or 
a new strategy is employed to address the poorly modeled events.  
Another problem when using conventional MCL is that samples often converge too quickly 
to a single or a few high-likelihood poses (Luo & Hong, 2004), which is undesirable in the 
localization in symmetric environments, where multiple distinct hypotheses have to be 
tracked for periods of time. This over-convergence phenomenon is caused by the use of too 
small sample size, as well as smaller sensor noise level. The viewpoint that the smaller the 
sensor noise level is, the more likely over-convergence occurs, is a bit counter-intuitive, but 
it actually leads to poor performance. Due to negative influences of the smaller sample size 
and poorly modeled events, implementation of conventional MCL in real situations is not 
trivial.  
Since sensing capabilities of most MCLs are achieved by sonar sensors or laser scanners, the 
third problem is how to effectively realize MCL with visual technology, which can more 
accurately reflect the true perceptual mode of the natural environments.

3. Extension of Monte Carlo Localization (EMCL) 

In order to overcome limitations of conventional MCL when applied to real situations, a 
new approach to extended Monte Carlo localization (EMCL) methodology is proposed in 
this section. 
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In the proposed extended MCL algorithm, besides the prediction and sensor update steps 
that are the same as in the conventional MCL, two validation mechanisms in the resampling 
step are introduced for checking abnormity of the distribution of weight values of sample 
sets. According to the validation, different resampling processes are employed, where 
samples are extracted either from importance resampling or from observation model. Table 
2 gives the procedures of the proposed extended MCL algorithm. 

Algorithm Extended MCL  
Prediction step: 
Sensor update step: 

Same as conventional MCL algorithm; 
Resampling step: (different from conventional MCL) 

Quantitatively describe the distribution of (normalized and non-normalized) weight 
values of sample set; 

Two validation mechanisms: 
if (over-convergence);                                                      over-convergence validation

sample size sn  resampling from observations  
for each sk nNi −= ,,1

importance resampling )(i
kX  from kS ′′

k
i

k Nw /1)( =

k
i

k
i

k SwX >→< )()( ,

end for 
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end for
else if (sum of (non-normalized) weight thW< );          uniformity validation 

resampling size 
ks Nn =

sensor based resampling (same as the above)  
else importance resampling 
end if 

end if 

Table 2. Extended MCL algorithm 

Two Validation Mechanisms 
The two validation mechanisms are uniformity validation and over-convergence validation, 
respectively.
Uniformity validation utilizes the summation of all non-normalized weight values of 
sample set after sensor update to check the observation deviation phenomenon, in which the 
non-normalized weight values in the distribution are uniformly low, since the observation 
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density deviates from the proposal distribution due to some poorly modeled events.  
Since the samples are uniformly distributed after the prediction step and re-weighted 
through the sensor update step, summation of non-normalized weight values of all samples 
W  can be, according to (2), expressed as 
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where, kN  denotes the sample size at time index k; )(i
kw  and )(ˆ i

kw  denote the weight values 

of sample )(i
kX  after motion update and after sensor update, respectively.  

Define thW  as the given threshold corresponding to the summation of the weight values. If 
the summation W  of all non-normalized weight values of samples is larger than the given 
threshold thW , the observation can be considered to be consistent with the proposal 
distribution, and the importance resampling strategy is implemented. Otherwise, deviation 
of observations from the proposal distribution is serious, and the sensor-based resampling 
strategy is applied by considering the whole sample size at the moment as the new sample 
size. The given threshold should be appropriately selected based on the information of the 
observation model and the observed features.  
Over-convergence validation is used to handle the over-convergence phenomenon, where 
samples converge quickly to a single or a few high-likelihood poses due to smaller sample 
size or lower sensor noise level. Over-convergence validation is employed based on the 
analysis of the distribution of normalized weight values of sample set, in which entropy and 
effective sample size are treated as measures for validation. When over-convergence 
phenomenon is affirmed, the strategy of both importance resampling and sensor-based 
resampling will be applied. 
Entropy denotes the uncertainty of probabilistic events in the form of −= ii ppH log ,
where ip  is the probability of events. In MCL, the importance factors indicate the matching 
probabilities between observations and the current sample set. Therefore, we can represent 
the uncertainty of the distribution of weight values of sample set by entropy. 
Effective sample size (ESS) of a weighted sample set is computed by (Liu, 2001): 

21 cv
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where kN  denotes the sample size at time index k, and 2cv  denotes variation of the weight 
values of samples, derived by 
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in which ))(( iwE  and ))(var( iw  denote the mean and variance of the distribution of weight 
values of samples, respectively. 
If the effective sample size is lower than a given threshold (percentage of the sample size), 
over-convergence phenomenon is confirmed. It is then necessary to introduce new samples, 
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with the number of )( ESSNcn ks −= , where c  is a constant. Otherwise, the difference of 
entropy of the distribution of weight values before and after sensor update is further 
examined to determine whether the over-convergence phenomenon happens, in the 
following way 

λ≥
−

p

pc

H
HH  (7) 

where, pH  and cH  denote the entropy of the distribution of weight values before and after 

sensor update, respectively; )1,0(∈λ  is a benchmark to check the relative change of entropy, 
which decreases as 

pH  increases. The larger the difference is, the more likely over-

convergence occurs. When over-convergence is confirmed in this manner, the number of 
new samples to be introduced is ))(1( ESSNn ks −−= λ .
By the analysis of the distribution of weight values of sample set, the abnormity cases can be 
effectively checked through the two validation mechanisms, and thereby premature 
convergence and deviation problem caused by non-modeled events can be deliberately 
prevented. In addition, more real-time requirements can be satisfied with smaller sample 
size. Further, the strategy of employing different resampling processes is to construct the 
true posterior distribution by treating the observation model as part of the proposal 
distribution, which is guaranteed to be consistent with the observations even when using 
smaller sample size or more precise sensors.  

4. An Implementation of Visual-Based Extended Monte Carlo Localization 

In this section, an implementation of the proposed extended MCL algorithm with visual 
technology will be discussed. The observation model )|(

)(i
kk XZp  is constructed based on 

visual polyhedron features that are recognized by Bayesian networks. The triangulation-
based resampling is applied. 

4.1 Sample Update 

In the prediction process, samples are extracted from the motion equation 

),,f( 111 −−−= kkkk vuXX

where
1−kv  denotes the sensor noise during the motion. Note that 

1−ku  consists of the 
translation

1−Δ ks  and the rotation 
1−Δ kθ , which are independent between each other and can 

be modeled with the odometry model (Rekleitis, 2003b). 
When the robot rotates by an angle of 

1−Δ kθ , the noise caused by odometry error is modeled 
as a Gaussian with mean zero and sigma proportional to 

1−Δ kθ . Therefore, the heading angle 
of the robot is updated by 

111 −Δ−− +Δ+=
kkkk θεθθθ  (8) 
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where
1−Δ kθε  is a random noise derived from the heading error model ),0( 1−Δ krot θσ , and 

rotσ  is a scale factor obtained experimentally (Rekleitis, 2003a). Likewise, there exists a 
translation error denoted by 

1−Δ ksε , which is related to the forward translation 1−Δ ks .
Furthermore, the change in orientation during the forward translation leads to the heading 
deviation. Then, the pose of samples can be updated by 
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where,
1−Δ ksε  and 

1θε  are random noises from the error models ),0( 1−Δ ktrans sN σ  and 

),0( 1−Δ kdrift sN σ , transσ  and driftσ  are scale factors experimentally obtained for the sigma of 

these Gaussian models (Rekleitis, 2003a); the sensor noise 1−kv  includes random noise 
1−Δ kθε

estimated by the heading error model ),0( 1−Δ krot θσ , as well as the translational error 

1−Δ ksε  with Gaussian model of ),0( 1−Δ ktrans sN σ  and the heading deviation 
1θε  with zero 

mean, estimated by ),0( 1−Δ kdrift sN σ .

To generate samples, the robot heading angle is firstly calculated by (8), and then the robot 
pose by (9). Figure 1 illustrates a distribution of samples generated in travelling 3.5 m along 
a straight line, with a known initial pose (on the right end) and the two noise parameters 

),( drifttrans σσ , where only the two-dimensional pose in x and y directions are given. As 

shown in this figure, the sample distribution spreads more widely as the travelled distance 
increases (the solid line with an arrow depicts the odometry data). 
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Figure 1. Sample distribution of straight line motion with error 5=transσ  and 1=driftσ
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4.2 Visual Sensor Update 

Observations from exteroceptive sensors are used to re-weight the samples extracted from 
the proposal distribution. Observations are based on sensing of polyhedrons in indoor office 
environments. Using the observed features, an observation model can be constructed for 
samples re-weighting, and the triangulation-based resampling process can be applied. 
Visual polyhedron features 
Polyhedrons such as compartments, refrigerators and doors in office environments, are used 
as visual features in this application. These features are recognized by Bayesian network 
(Sarkar & Boyer, 1993) that combines perceptual organization and color model. Low-level 
geometrical features such as points and lines, are grouped by perceptual organization to 
form meaningful high-level features such as rectangular and tri-lines passing a common 
point. HIS (Hue, Intensity, Saturation) color model is employed to recognize color feature of 
polyhedrons. Figure 2 illustrates a model of compartment and the corresponding Bayesian 
network for recognition. More details about nodes in the Bayesian network can be found in 
the paper (Shang et al., 2004). 
This recognition method is suitable for different environment conditions (e.g., different 
illuminations and occlusions) with different threshold settings. False-positives and false- 
negatives can also be reduced thanks to considering polyhedrons as features. Furthermore, 
there are many low-level features in a feature group belonging to the same polyhedron, 
which are helpful in matching between observations and environment model since the 
search area is constrained. 

                     
(a)                                                                                (b) 

Figure 2. Compartment model (a) and Bayesian network for compartment recognition (b) 

Consider a set of visual features m
kkkk zzzZ ],,[ 21= to be observed. The eigenvector of 

each visual feature j, denoted by Tj
k

j
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j
k tz ],[ φ= , is composed of the feature type j

kt  and the 
visual angle j

kφ  relative to the camera system, developed by 
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where width is the image width, cj
ku  is the horizontal position of feature in the image, and 

β  is half of the horizontal visual angle of the camera system.  
Visual observation model 
As described in Section 2, the sample weight is updated through an observation model 

)|(
)(i

kk XZp . It is assumed that the features are detected solely depending on the robot’s 
pose. Therefore, the observation model can be specified as: 
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The observation model for each specific feature j can be constructed based on matching of 
the feature type and the deviation of the visual angle, i.e., 
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where, j
kt  and 0j

kt  are feature types of current and predictive observations, respectively, and 

)(⋅δ  is a Dirac function; j
kφ  and 0j

kφ  are visual angles of current and predictive 

observations, and φσ  is variance of φ . When 0j
k

j
k tt = , the observed feature type is the same 

as the predictive ones. When the number of the predictive features is more than that of the 
observed ones, only part of the predictive features with the same number of observed 
features are extracted after they are sorted by the visual angle, and then a maximum 
likelihood is applied. 

4.3 Resampling Step

As discussed in Section 3, two validation mechanisms in the resampling step are firstly 
applied to check abnormity of the distribution of weight values of sample sets. Then 
according to the validation, the strategy of using different resampling processes is 
employed, where samples are extracted either from importance resampling or from 
observation model. Importance resampling has been illustrated in Section 2 (see Table 1). 
Here we will discuss the resampling method from the visual observation model.  
As we have mentioned that the threshold thW  for uniformity validation should be 
appropriately selected. For our application example, the threshold thW  is determined as 
follows based on the observation model (11): 

∏⋅=
=

m

i
wth kW

1 2
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φσπ
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where wk  is a scale factor, and m  is the number of current features.  
Sensor-based Resampling 
In the resampling from observations, )|( kk ZXp  is also treated as the proposal distribution, 
which can provide consistent samples with observations to form the true posterior 
distribution. According to the SIR algorithm, samples must be properly weighted in order to 
represent the probability distribution. Note that such sensor-based resampling is mainly 
applied in some abnormal cases (e.g., non-modeled events), which is not carried out in every 
iterative cycle. Furthermore, after completing the sensor-based resampling, all samples are 
supposed to be uniformly distributed and re-weighted by motion/sensor updates in the 
next cycle.  
The triangulation method is utilized for resampling from visual features, where visual 
angles are served as the observation features in the application (Krotkov, 1989; Mufioz & 
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Gonzalez, 1998; Yuen & MacDonald, 2005). Ideally, the robot can be uniquely localized with 
at least three features, as shown in Figure 3 (a), where the number 1~3 denotes the index of 
features. In practice, however, there exists uncertainty in the pose estimation due to 
observation errors and image processing uncertainty. The pose constrained region C0 shown 
in Figure 3 (b), illustrates the uncertain area of the robot pose with uncertain visual angle, 
where φφφ Δ−=− , φφφ Δ+=+ , φ  and φΔ  are visual angle and the uncertainty, 
respectively. The uncertain pose region just provides a space for resampling. The incorrect 
samples can be gradually excluded as the update process goes on. 

(a)                                                                              (b)
Figure 3. Triangulation-based localization (a) in the ideal case, (b) in the case with visual 
angle error 

In the existing triangulation methods, visual features are usually limited to vertical edges 
(Mouaddib & Marhic, 2000), which are quite similar and have large numbers. While in our 
application, polyhedron features recognized by Bayesian networks combine perceptual 
organization and color model, and therefore reduce the number of features and simplify the 
search. In addition, the sub-features of polyhedrons such as vertical edges in recognized 
compartments, can also be used for triangulation.  
In the process of searching features by interpretation tree (IT), the following optimizations 
can be applied: 
1. Consider all polyhedrons as a whole, and the position of each polyhedron as the central 

position of each individual feature. 
2. As visual angle of the camera system is limited, form the feature groups that consist of 

several adjacent features according to their space layout. The number of features in each 
feature group should be more than that of the observed features. The search area of the 
interpretation tree is within each feature group. 

3. Search match in terms of the feature type, and then verify by triangulation method the 
features satisfying the type validation, to see whether the pose constraint regions each 
formed by visual angles of two features, are intersected as is shown by the pose 
constraint region C0 in Figure 3 (b). 

Then, the random samples ),(
)()( i

k
i

k yx  can be extracted from the pose constraint region. The 
orientations of the samples are given by 
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where j
k

j
k

j
k yx φ,,  are position and visual angle of the feature j, respectively, and m  is the 

number of observed features. 
Figure 4 (a) illustrates the sample distribution after sampling from two observed features 1f
and 2f , for a robot pose (3800mm, 4500mm, -120º). The visual angle error is about five 
percent of the visual angle. There are about 1000 generated samples that are sparsely 
distributed in the intersection region formed by the observed features. Figure 4 (b) 
illustrates the sampling results from three features 1f , 2f  and 3f , for a robot pose (3000mm, 
4200mm, -100º). It can be seen that all extracted samples locate in the pose constraint region 
and are close to the true robot pose. 

5. Experiments 

To verify the proposed extended MCL method, experiments were carried out on a pioneer 
2/DX mobile robot with a color CCD camera and sixteen sonar sensors, as shown in Figure 
5. The camera has a maximum view angle of 48.8 degrees, used for image acquisition and 
feature recognition. Sonar sensors are mainly for collision avoidance. Experiments were 
performed in a general indoor office environment as shown in Figure 6 (a). Features in this 
environment are compartments (diagonal shadow), refrigerators (crossed shadow) and door 
(short thick line below). Layout of features is shown in Figure 6 (b). 
In the experiments, the sample size was set as a constant of 400. Parameters of the extended 
MCL are: the percentage threshold of effective sample size was 10%, the constant c was 0.8, 
λ  was 0.15~0.25, and the scale factor wk  was 50%. Parameters for conventional MCL (with 
random resampling) were: percentage threshold of effective sample size is still 10%, c=0.3,
λ =0.35, and wk =30%.
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Figure 4. Sampling from observations with two and three features respectively 

Figure 5. Pioneer 2/DX mobile robot, equipped with a color CCD camera and sixteen sonar 
sensors around 
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 (a) (b) 
Figure 6. (a) Experiment environmental model.   (b) Layout of environmental features 

5.1 Global Localization with Kidnapped Movement 

First, the proposed extended MCL method was applied for global localization as well as an 
non-modeled movement (e.g., kidnapped problem), with time-variant sample distributions, 
entropy and effective sample size. Figure 7 illustrates the whole motion trajectory. It is seen 
that the robot started the motion from position a to position b, then was kidnapped to 
position c, and then continued to move to the end position d. Figures 8 and 9 illustrate 
results when the sample size was within 400. Figure 8 shows that the effective sample size 
and entropy are time varying. Sample distributions at different iterations are shown in 
Figure 9, where (a) ~ (f) corresponds to the initial, the 1st, the 8th, the 9th, the 17th, the 18th

and the 26th iterations, respectively. As shown in Figure 9 (a), the initial distribution was 
uniform. At the first iteration, when two compartments 4f  and 5f  were observed, entropy 
after sensor update decreased, as shown in Figure 8 (b), and both importance resampling 
and triangulation-based resampling were applied. Due to existence of multi-matches, 
importance resampling was applied in all successive iterations, as multi-clusters shown in 
Figure 9 (b). At the 9th iteration, the feature of the door 1f  was observed, and a single 
sample cluster shown in Figure 9 (c) was obtained until reaching position b, where all 
samples were distributed nearby the true pose of the robot, as seen in Figure 9 (d). At the 
18th iteration, the robot was kidnapped to the position c with a largely-changed heading 
angle. At this moment, the effective sample size and the entropy decreased greatly, as 
shown in Figure 8 (a) and (b). With observations of the features of the door 1f , the 
refrigerator 10f , and the compartment 9f , sample distribution was obtained as shown in 
Figure 9 (e), after applying importance resampling and triangulation-based resampling, 
until to the end position d where the sample distribution is shown in Figure 9 (f). 
From the above localization process, it can be seen that the sensor-based resampling, after 
an effective examination of weight values of samples by over-convergence validation, can 
well solve the robot kidnapped problem. Due to too many similar features in the 
environment, there were still some samples with higher weights after the kidnapped 
motion, and therefore only over-convergence validation was executed without the 
uniformity validation. If the robot is kidnapped to a region without similar features, the 
uniformity validation can be executed.

5.2 Comparison of Localization Errors

Through applying the strategy of different resampling processes in the extended MCL, the 
localization error becomes smaller than that with the conventional MCL, especially in the 
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non-modeled movements. Figure 10 illustrates a comparison of the localization errors 
between the extended MCL and the conventional MCL appended by random resampling, 
with the same observation model and the same sample size before and after the kidnapped 
motion. Suppose that the robot’s pose obtained from odometry was accurate enough for a 
short moving distance on the smooth floor. As is seen from Figure 10, at the moment when 
localization error increases at the 5th iteration, robot was kidnapped. The localization error 
under the extended MCL (with triangulation-based resampling), is much smaller than that 
under conventional MCL (with random resampling). This is to verify the improved 
localization performance of the proposed extended MCL. 

5.3 Time Performance 

We further demonstrate that the computational resources of the extended MCL could be 
effectively utilized by appropriately using the sensor-based resampling. As seen from the 
previous experiments, the number of samples (sample size) with EMCL is only 400, while 
the number of sample size with conventional MCL is usually much higher than it to obtain 
good localization performance. 
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Figure 11 (a) illustrates the total update time of the resampling process with respect to 
different numbers of samples. It can be seen when the sample size is less than 1500, the 
update time is lower and increases slowly as the sample size increases; when the sample size 
is more than 2000, the update time is higher and increases fast as the sample size increases. 
This indicates higher computational efficiency since high number of samples is not required, 
and thus the update time can be saved. 
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Figure 11 (b) further illustrates the percentage of the sensor-based resampling time with 
respect to the total update time versus different number of samples. The percentage of 
resampling time decreases as the sample size increases, i.e., from 48.6% with 200 samples to 
35.9% with 8000 samples. Since many samples are not deleted in a large sample set, the 
sensor-based resampling is not necessarily performed, and the process without resampling 
dominates the whole process. When the sample size increases to a certain extent, the 
percentage of the resampling time does not change obviously. This implies that the 
extended MCL with smaller sample size has the similar localization performance to that 
with relative larger sample size. Although the percentage of the sensor-based resampling 
time in the whole update time with smaller sample size is higher than that with higher 
sample size, the total update time is reduced when using smaller sample size. 

6. Conclusion 

An extended Monte Carlo localization (EMCL) method is proposed in this book chapter by 
introducing two validation mechanisms to apply a resampling strategy to conventional 
MCL. Two validation mechanisms, uniformity validation and over-convergence validation, 
are effectively used to check abnormity of the distribution of weight values of sample set, 
e.g., observation deviation or over-convergence problem. The strategy of employing 
different resampling processes is proposed to construct more consistent posterior 
distribution with observations. This new approach is aimed to improve localization 
performance particularly with smaller sample size in the non-modeled robot movements, 
and thus achieve global localization more efficiently. A vision-based extended MCL is 
further implemented, utilizing triangulation-based resampling from visual features in a 
constraint region of the pose space. Experiments conducted on a mobile robot with a color 
CCD camera and sixteen sonar sensors verify efficiency of the extended MCL method. 
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1. Introduction  

Autonomous visual navigation, i.e. determination of position, attitude and velocity (ego 
motion) by processing of the images from onboard camera(s), is essential for mobile robots 
control even in the presence of GPS networks, as the accuracy of GPS data and/or the 
available map of surroundings can be insufficient. Besides, GPS signals reception can be 
unstable in many locations (inside buildings, tunnels, in narrow streets, canyons, under 
trees, etc).  
Up to now most of the practical visual navigation solutions have been developed for ground 
robots moving in cooperative and/or well determined environment. However, future 
generations of mobile robots should be also capable of operating in complex and non-
cooperative 3D environments. Visual navigation in such conditions is much more 
challenging, especially for flying robots, where full 6DOF pose/motion should be 
determined. Generally 3D environment perception is required in this case, i.e., 
determination of a local depth map for the visible scene.  
3D scene information can be obtained by stereo imaging; however this solution has certain 
limitations. It requires at least two cameras, precisely mounted with a certain stereo base 
(can be critical for small vehicles). Due to fixed stereo base the range of the depth 
determination with stereo imaging is limited. A more universal solution with less hardware 
requirements can be achieved with optical flow processing of sequential images from a 
single onboard camera. 
The ego motion of a camera rigidly mounted on a vehicle is mapped into the motion of 
image pixels in the camera focal plane. This image motion is commonly understood as 
image flow or optical flow (OF) (Horn & Schunck, 1981). This vector field of 2D image 
motion can be used efficiently for 3D environment perception (mapping) and vehicle 
pose/motion determination as well as for obstacle avoidance or visual servoing. The big 
challenge for using the optical flow in real applications is its computability in terms of its 
density (sparse vs. dense optical flow), accuracy, robustness to dark and noisy images and 
its real-time determination. The general problem of optical flow determination can be 
formulated as the extraction of the two-dimensional projection of the 3D relative motion into 
the image plane in form of a field of correspondences (motion vectors) between points in 
consecutive image frames. 
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This article addresses a real-time solution for high precision optical flow computation based 
on 2D correlation of image fragments on the basis of an optical correlator. It exploits the 
principle of Joint Transform Correlation (JTC) in an optoelectronic setup using the Optical 
Fourier Transform (Goodman, 1968). Based on the experience of the authors with different 
successful optical processor developments (Tchernykh et al., 2004, Janschek et al., 2004a, 
Tchernykh et al., 2000, Janschek et al., 2005a) a new optical processor design is presented, 
which makes use of advanced optoelectronic technology. The proposed optoelectronic 
optical flow processor (OE-OFP) shows to be very compact with low mass and low power 
consumption and provides the necessary high performance needed for navigation 
applications in the field of robotics (ground, aerial, marine) and space flight (satellites, 
landing vehicles). The paper recalls briefly the underlying principles of optical flow 
computation and optical correlation, it shows the system layout and the conceptual design 
for the optoelectronic optical flow processor and it gives preliminary performance results 
based on a high fidelity simulation of the complete optical processing chain. 

2. Requirements to Optical Flow Processor 

Considering a flying platform moving in a complex non-cooperative 3D environment 
(indoor or outdoor) as a target mission, the following requirements to the Optical Flow 
Processor (OFP) can be formulated. 
1. Image quality tolerance. As various illumination conditions can be expected, the OFP 

should be able to process dark and noisy images with low texture contrast. 
2. Optical flow density. The required resolution of the optical flow fields depends on scene 

complexity. On the authors’ experience, the depth information should be obtained for at 
least 32x32 (better 64x64) locations for adequate perception of complex 3D environment 
(required for navigation). This means, that at least 32x32 (better 64x64) optical flow 
vectors should be determined for each frame. 

3. Frame rate. Considering relatively high motion dynamics of the flying robot, processing 
of up to 10 frames per second is required for navigation purposes. 

4. Accuracy. Considering a maximal acceptable error of 10 percent for local depth 
determination to get a reasonable 3D environment perception, the error of the OF 
vectors determination should be also within 10 percent. This means that OF vectors 
with magnitude of a few pixels should be determined with sub pixel accuracy (errors 
should be within a few tenths of a pixel). 

5. Size/mass/power consumption. To allow installation onboard a flying platform these 
parameters should be minimized. Roughly the volume of the OFP should be within a 
few tens of cubic centimetres, mass – within a few tens of grams and power 
consumption – within a few watts. 

3. Existing solutions (optical flow determination background) 

The problem of the optical flow computation is being investigated for more then two 
decades. Many methods for the OF determination have been developed (Beauchemin & 
Barron, 1995, Bruhn et al., 2003, McCane et al, 1998, Liu et al., 1998). All these methods have 
in common, that rather dense and accurate OF needs low noise images and requires high 
computational power, which is hardly realizable with embedded processors (Liu et al., 
1998). Existing pure digital high performance solutions based on conventional PC or FPGA 
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technology (Bruhn et al., 2003, Bruhn et al., 2005, Diaz et al., 2006) additionally consume a 
lot of power, mass and volume which does not fit the requirements of mobile robotics, 
especially if application onboard a flying platform is considered. The recently developed 
and currently very popular SIFT approach (Lowe, 1999, Se et al., 2001) allows a 
computationally efficient determination of more or less sparse OF fields in well structured 
environments. Some specialized high speed OF sensors on hybrid analogue-digital 
technology (Barrows & Neely, 2000, Zufferey, 2005) provide even super real-time 
performances but are suffering from the required accuracy of the OF vectors for navigation 
purposes. A most robust approach is the area correlation, applied originally for image 
registration (Pratt, 1974). Area correlation uses the fundamental property of the cross-
correlation function of two images, which gives the location of the correlation peak directly 
proportional to the displacement vector of the original image shift. 
For each pair of sequential images the OF field is determined by subdividing both images 
into small fragments and 2D correlation of corresponding fragments. As a result of each 
correlation the local shift vector at the specific location is determined; a whole set of local 
shift vectors forms an optical flow matrix (Figure 1). 

Figure 1. Principle of correlation based optical flow determination 

The optical flow determination method, based on 2D correlation of the image fragments, 
offers a number of advantages:  
• high sub pixel accuracy ; 
• low dependency on image texture properties (no specific texture features required); 
• high robustness to image noise (suitable for short exposures and/or poor illumination 

conditions)
• direct determination of multi-pixel shifts (suitable for fast image motion). 
Simultaneously this method requires a very large amount of computations which prevents 
practically this method from a real time realization with conventional digital processors 
onboard a flying robot.  
Generally, none of the existing OF determination techniques satisfies all of the requirements 
to the Optical Flow Processor, suitable for installation onboard a flying platform (listed in 
section 2). To reach the real time performance and to satisfy the strict size/mass/power 
limitations while keeping the accuracy and robustness of the 2D correlation based approach, 
we propose to perform the correlations with an onboard optical correlator. 
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4. Optical correlator technology 

A very efficient method for 2D correlation requiring only double Fourier transform without 
phase information is given by the Joint Transform Correlation (JTC) principle (Jutamulia, 
1992).
The two images 

1
( , )f x y  and 

2
( , )f x y  to be correlated are being combined to a joint image 

( , )I x y  (Figure 2). A first Fourier transform results in the joint power spectrum 
( , ) { ( , )}S u v F I x y= . Its magnitude contains the spectrum ( , )F u v  of the common image 

contents augmented by some periodic components which are originating from the spatial shift 
G  of 

1
f  and 

2
f  in the joint image I . A second Fourier transform of the squared joint 

spectrum 2
( , ) ( , )J u v S u v= results in four correlation functions. The centred correlation 

function ( , )ffC x y  represents the auto-correlation function of each input image, whereas the 

two spatially shifted correlation functions ( , )ff x yC x G y G± ±  represent the cross-correlation 

functions of the input images. The shift vector G  contains both the technological shift 
according to the construction of the joint image ( , )I x y  and the shift of the image contents 

according to the image motion. If the two input images 
1

f  and 
2

f  contain identical (but 
shifted) image contents, the cross-correlation peaks will be present and their mutual spatial 
shift ( )G GΔ = − −  allows determining the original image shift in a straightforward way. 
This principle can be realized in hardware by a specific optoelectronic setup, named Joint
Transform Optical Correlator (JTOC). The required 2D Fourier transforms are performed by 
means of diffraction-based phenomena, incorporating a so called optical Fourier processor 
(Goodman, 1968). A laser diode (Figure 3) generates a diverging beam of coherent light 
which passes a single collimating lens focusing the light to infinity. The result is a beam of 
parallel light with plane wave fronts. The amplitude of the plane wave front is modulated 
by a transmissive or reflective spatial light modulator (SLM). The SLM actually works as a 
diffraction grid and the resulting diffraction pattern can be made visible in the focal plane of 
a second lens (Fourier lens). Under certain geometric conditions the energy distribution of 
this pattern is equal to the squared Fourier transform (power spectrum) of the modulated 
wave front. The power spectrum can be read by a CCD or CMOS image sensor located in 
the focal plane of the Fourier lens of the optical Fourier processor. The position of the 
correlation peaks in the second power spectrum (correlation image) and the associated shift 
value can be measured with sub-pixel accuracy using e.g. standard algorithms for centre of 
mass calculation.  
Optical processing thus allows unique real time processing performances of high frame rate 
video streams. 
This advanced technology and its applications have been studied during last years at the 
Institute of Automation of the Technische Universität Dresden (Tchernykh et al., 2004, 
Janschek et al., 2004a, Janschek et al., 2007). Different hardware models have been 
manufactured, e.g. under European Space Agency (ESA) contracts (Figure 4). Due to special 
design solutions owned by TU Dresden, the devices are robust to mechanical loads and 
deformations. (Tchernykh et al., 2000, Janschek et al., 2005a). One of the models has been 
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successfully tested in an airborne test campaign, where very promising performances have 
been shown (Tchernykh et al., 2004). 

Figure 2.  Principle of the joint transform correlation 
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Figure 3. Principle of the Joint Transform Optical Correlator (JTOC) 

Figure 4. Hardware model of an optical correlator 
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5. Determination of the optimal size of correlated fragments 

5.1 Simulation experiment description 

The dimensions of correlated fragments determine both the accuracy and reliability of the 
2D correlation operation. Larger window size improves the reliability of the optical flow 
determination in poorly textured image areas and reduces the errors of the obtained OF 
vectors. At the same time, increasing the correlated fragments size smoothes the obtained 
OF field, it suppresses small details and produces additional errors in areas with large 
variations of local depth.  
The goal of the simulation experiment was to estimate the optimal size of the correlated 
fragment, making the best compromise between the accuracy/reliability of correlation and 
preservation of small details of the underlying 3D scene. 
The experiment has been performed with a high fidelity software model of the proposed 
optical flow processor. The model includes the detailed model of the complete processing 
chain of the optical correlator. Image processing algorithms simulate all relevant operations 
of the optoelectronic hardware realization of the optical correlator (optical diffraction effects, 
dynamic range limitation and squaring of the output images by image sensor, scaling of the 
output images according to focal length value, etc.). 
The experiment has been performed using simulated images from synthetic 3D scenes of a 
planetary surface generated during an ESA (European Space Agency) study on the visual 
navigation of a planetary landing vehicle (Janschek et al., 2005b). The images contain parts 
of rich texture as well as flat low texture regions and dark shadows. The image sequence of 
an inclined landing trajectory (example image see Figure 5) has been generated on base of a 
3D model of the landing site using standard ray tracing software considering the 
Modulation Transfer Function (MTF) of the camera as well as photonic and readout noise 
and pixel response non-uniformity. 

Figure 5. Synthetic 3D scene for testing and performance evaluation 



Optical Correlator based Optical Flow Processor for Real Time Visual Navigation 229

Test OF
Correlated 

fragments size 
8x8 pixels

Test OF
Correlated 

fragments size 
16x16 pixels

Test OF
Correlated 

fragments size 
32x32 pixels

Test OF
Correlated 

fragments size 
64x64 pixels

Reference OF Magnified errors 
(reference OF – test OF) 

8 12 16 24 32 48 64
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
RMS error of  
optical flow, pixels 

Correlated fragment 
size, pixels 

Figure 6. Results of the optical flow sensitivity with respect to correlation window size 

5.2 Simulation experiment results 

The OF fields have been determined with a correlated fragments size varying in the range 
from 8x8 to 64x64 pixels and they have been compared with a reference (ideal) OF field to 
determine the OF errors. The reference OF field has been produced directly from the 
reference trajectory data and the known 3D model of the landing site. Figure 6 shows the 
results of the optical flow accuracy sensitivity for different correlation window sizes. Images 
in the left column represent the 2D patterns of the OF vectors magnitudes (brighter pixels 
represent larger OF vectors), the middle row contains the error patterns, determined as the 
difference between the reference (ideal) and test OF fields. RMS error values are shown in 
the diagram at the bottom right corner. 
According to this sensitivity analysis, minimal OF errors are expected for a window size of 
24x24 pixels. 
For the selected window size (24x24 pixels) the sensitivity to additive and multiplicative 
image noise on the OF error has been investigated. It has been found, that random noise 
with standard deviation within 8% of average image brightness (signal-to–noise ratio above 
12 dB) has little influence on the OF field accuracy. Starting from σ = 8%, however, the effect 
of image noise rapidly increases. According to these results, the limit of acceptable image 
noise for optical flow determination with fragments size 24x24 can be set to σ = 8% of 
average image brightness. 

6. Optical flow processor concept 

Based on the result of previous theoretical studies and experimental works (software 
simulations and hardware models testing) a detailed concept of a compact OptoElectronic 
Optical Flow Processor (OE-OFP), suitable for installation onboard a flying robot has been 
developed.   
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The main purpose of the OE-OFP is the real time determination of the optical flow field for 
the visible surrounding environment. Figure 7 shows the general data flow chart for the 
optical flow computation according to the Joint Transform Correlation (JTC) principle. 
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Figure 7. Main operations for optical flow determination according to JTC principle 

The operations of 2D Fourier transform are most time and resource consuming for a digital 
realization of the OF processor. With optical realisation however, Fourier transform is 
practically performed instantly (with “speed of light”) and requires power only for SLM 
illumination. In this case other operations in the data processing chain (images 
readout/loading, fragments cut and correlation images processing) are practically 
determining the limits of performance improvement and size/mass/power minimization. 
Therefore, optimization of these operations is particularly essential for optimal design of the 
optoelectronic OF processor.  
The concept of the OE-OFP has been developed assuming a realization of the input/output 
and digital processing operations directly on the image sensors and SLM chips. This 
solution eliminates the need for a dedicated digital processing electronics and reduces 
dramatically the power consumption. 
The unpackaged chips can be mounted close to each other on a single substrate (Chip-on-
Board – COB mounting). A small distance between the dies (Figure 8) is offering direct chip-
to-chip connections. This avoids the need for powerful buffers inside the processor and in 
consequence reduces further the OFP power consumption. As the processor outputs only 
the OF vectors coordinates, the output data rate and therefore the power consumption of the 
output buffers are also limited. 

Lens 

Input image sensor

Light path Laser diode 

SCIS 

SLM 

Figure 8. Realization concept of the OE-OFP 

The optical system of the OF processor has been designed using a reflective SLM, which 
modulates the phase of the reflected wave front. To reduce the overall processor size and to 
increase the mechanical stability, a folded optical system design on the base of a small block 
of glass or optical plastic is currently considered. The small dimensions of the optical system 
allow a realization of the whole OF processor including an interface board and the lens in a 
compact housing, suitable for installation on a flying platform (Figure 9). 
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Figure 9. Possible OF processor housing configuration 

The operation of the presented optoelectronic processor is briefly explained in the following.  
The lens forms an image of the surrounding environment on the input image sensor. After 
exposure, the image data are recorded in an on-chip memory within the image sensor. The 
fragments for correlation are cut from two sequential frames according to the pre-
programmed pattern – this operation is also performed within the input image sensor. The 
fragments prepared for correlation are sent to the SLM. Coherent light, emitted by a laser 
diode, reflects from the aluminized side of a glass block and illuminates the SLM surface via 
the embedded lens (can be formed as a spherical bulb on the surface of the block). The phase 
of the wave front reflected from the SLM, is modulated by the input image. It is focused by 
the same lens and forms (after intermediate reflection) the amplitude image of the Fourier 
spectrum of the input image on the surface of the Spectrum/Correlation Image Sensor 
(SCIS). After a second optical Fourier transform, the correlation image is obtained. The 
optical flow vector (equal to the shift between the correlated fragments) is calculated from 
the correlation peaks positions within the correlation image. This operation is performed 
directly inside the SCIS chip. The coordinates of the OF vectors are sent to the output 
buffers, installed on a small printed board. 
The expected performances of the OE-OFP (Table 1) have been estimated on the base of the 
conceptual design of the processor and the results of simulation experiments, taking into 
account also the test results of the existing hardware models of the optical correlator 
developed within previous projects (Tchernykh et al., 2004, Janschek et al., 2004a). 

Input 3D scene 
Output optical-flow fields 
Optical-flow resolution (max) 64x64=4096 vectors/field 
Optical-flow resolution (min) 8x8=64 vectors/field 
OF fields rate @ 4096 vectors/field 10 fields/s 
OF fields rate @ 64 vectors/field 500 fields/s 
Processing delay One frame (0.002 … 0.1 s) 
Inner correlations rate 50000 correlations/s 
OF vectors determination errors σ = 0.1 … 0.25 pixels 
OF processor dimensions 50x20x8 mm (w/o lens) 
OF processor mass within 20g (w/o lens) 
Power consumption within 2 W 

Table 1. Expected performances of the Optoelectronic Optical Flow Processor  
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Comparison of Table 1 with the requirements listed in section 2 shows that the proposed 
optoelectronic Optical Flow processor is expected to satisfy the requirements, listed in 
section 2. To compare the proposed processor with other currently available solutions for 
real time optical flow determination, it is however important to evaluate a performance 
measure related to mobility, which takes into account also the processor power 
consumption and volume related to the computing performance in terms of flow vectors per 
second and accuracy. 
Figure 10 shows these performance-to-mobility measures taking into account also the power 
consumption and the volume of the optical-flow processor module. It follows that the 
proposed optoelectronic optical flow processor design (OE-OFP) shows unique 
performances in comparison with the fastest digital optical-flow computation solution 
currently available (Bruhn et al., 2005, Diaz et al., 2006). 

OE-OFP 

Bruhn (2005) 

Diaz (2006) 

Figure 10. Performance-to-mobility comparison of optical flow processors 

7. Application areas 

The proposed optical flow processor is intended to be used mainly in the field of visual 
navigation of mobile robots (ground, aerial, marine) and space flight (satellites, landing 
vehicles). The small size, mass and power consumption makes the proposed OE-OFP 
particularly suitable for application onboard micro air vehicles (MAVs). 
From the obtained optical flow, 3D information can be extracted and a 3D model of the 
visible environment can be produced. The considerable high resolution (up to 64x64 OF 
vectors) and very high accuracy (errors σ  0.25 pixels) of the determined optical flow makes 
such 3D environment models detailed and accurate. These 3D environment models can be 
used for 3D navigation in complex environment (Janschek et al., 2004b) and also for 3D 
mapping, making the proposed OF processor ideally suited for 3D visual SLAM. The 
applicability of the optical flow data derived with the proposed principles (joint transform 
correlation) and technology (optical correlator) to real world navigation solutions even 
under unfavourable constraints (inclined trajectories with considerable large perspective 
distortions) has been proved by the authors in recent work (Janschek et al., 2005b, 
Tchernykh et al., 2006), some simulation results are also given in the next section. 
The anticipated real time performance of the processor (up to 500 frames/s with reduced OF 
field resolution) provides a wide range of opportunities for using the obtained optical flow 
for many additional tasks beyond localization and mapping, e.g. vehicle stabilization, 
collision avoidance, visual odometry, landing and take-off control of MAVs. 
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8. Application example: visual navigation of the outdoor UAV 

The concept of visual navigation for a flying robot, based on 3D environment models 
matching has been proposed by the authors (Janschek et al., 2005b, Tchernykh et al., 2006) as 
one of the most promising applications of high resolution real time optical flow. 3D models 
of the visible surface in the camera-fixed coordinate frame will be reconstructed from the OF 
fields. These models will be matched with the reference 3D model with known 
position/attitude (pose) in a surface-fixed coordinate frame. As a result of the matching, the 
reconstructed model pose in the surface-fixed frame will be determined. With position and 
attitude of the reconstructed model known in both camera-fixed and surface-fixed frames, 
the position and attitude of the camera can be calculated in the surface-fixed frame. 
Matching of 3D models instead of 2D images is not sensitive to perspective distortions and 
is therefore especially suitable for low altitude trajectories. The method does not require any 
specific features/objects/landmarks on the terrain surface and it is not affected by 
illumination variations. The high redundancy of matching of the whole surface instead of 
individual reference points ensures a high matching reliability and a high accuracy of the 
obtained navigation data. Generally, the errors of vehicle position determination are 
expected to be a few times smaller than the resolution of the reference model. 
To prove the feasibility of the proposed visual navigation concept and to estimate the 
expected navigation performances, a software model of the proposed visual navigation 
system has been developed and an open-loop simulation of navigation data determination 
has been performed. 
A simulation environment has been produced using the landscape generation software (Vue 
5 Infinity from e-on software) on the base of 3D relief, obtained by filtering of a random 2D 
pattern. Natural soil textures and vegetation have been simulated (with 2D patterns and 3D 
models of trees and grass), as well as natural illumination and atmospheric effects 
(Figure 11). A simulation reference mission scenario has been set up, which includes the 
flight along a predetermined trajectory (loop with the length of 38 m at a height about 10 m 
over the simulation terrain).  

Figure 11. Simulation environment with UAV trajectory (side and top views) 

Simulated navigation camera images (Figure 12) have been rendered for a single nadir-
looking camera with a wide angle (fisheye) lens (field of view 220°), considering the 
simulated UAV trajectory. 
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A reference 3D model of the terrain has been produced in a form of Digital Elevation Model 
(DEM) by stereo processing of two high altitude images (simulating the standard aerial 
mapping). Such model can be represented by a 2D pseudo image with the brightness of each 
pixel corresponding to the local height over the base plane. 
The optical flow determination has been performed with a detailed simulation model of the 
optical correlator. The correlator model produces the optical flow fields for each pair of 
simulated navigation camera images, simulating the operation of the real optical hardware. 
Figure 13 shows an example of the optical flow field. The 3D surface models have been first 
reconstructed as local distance maps in a camera-fixed coordinate frame (Figure 13), then 
converted into DEMs in a surface-fixed frame using the estimated position and attitude of 
the vehicle. Figure 14 shows an example of both the reconstructed and reference DEMs. 

Figure 12. Example of simulated navigation camera image (fisheye lens) 

Optical flow field (magnitude of vectors 

coded by brightness, direction – by color) 

Distance map (local distance coded by 

brightness) 

Figure 13. Example of an optical flow field and corresponding distance map 

Navigation data (position, attitude and velocity of the robot) have been extracted from the 
results of the matching of the reconstructed and reference models and compared with the 
reference trajectory data to estimate the navigation errors. As a result of the test, the RMS 
position error for the translation part of the trajectory was 0.20 m and the RMS attitude error 
was 0.45 degrees. These have been obtained by instantaneous processing of the optical flow 
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data, i.e. without any time filtering, and without any additional navigation aids (except the 
DEM reference map). The navigation accuracy can be further improved by some filtering, 
and by using data from inertial measurement unit. 

Reference DEM Reconstructed DEM 

Figure 14. Reference and reconstructed DEMs 

9. Summary and conclusions 

The conceptual design of an advanced embedded optical flow processor has been presented. 
Preliminary performance evaluation based on a detailed simulation model of the complete 
optical processing chain shows unique performances in particular applicable for visual 
navigation tasks of mobile robots. The detailed optoelectronic design work is currently 
started.
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1. Introduction      

Visual control of robots using vision system and cameras has appeared since 1980’s. Visual 
(image based) features such as points, lines and regions can be used to, for example, enable 
the alignment of a manipulator / gripping mechanism with an object. Hence, vision is a part 
of a control system where it provides feedback about the state of the environment. In 
general, this method involves the vision system cameras snapping images of the target-
object and the robotic end effector, analyzing and reporting a pose for the robot to achieve. 
Therefore, 'look and move' involves no real-time correction of robot path. This method is 
ideal for a wide array of applications that do not require real-time correction since it places 
much lighter demands on computational horsepower as well as communication bandwidth, 
thus having become feasible outside the laboratory. The obvious drawback is that if the part 
moves in between the look and move functions, the vision system will have no way of 
knowing this in reality this does not happen very often for fixture parts. Yet another 
drawback is lower accuracy; with the 'look and move' concept, the final accuracy of the 
calculated part pose is directly related to the accuracy of the 'hand-eye' calibration (offline 
calibration to relate camera space to robot space). If the calibration were erroneous so would 
be the calculation of the pose estimation part. 
A closed–loop control of a robot system usually consists of two intertwined processes: 
tracking pictures and control the robot’s end effector. Tracking pictures provides a 
continuous estimation and update of features during the robot or target-object motion. 
Based on this sensory input, a control sequence is generated.  
Y. Shirai and H. Inoue first described a novel method for 'visual control' of a robotic 
manipulator using a vision feedback loop in their paper. Gilbert describes an automatic 
rocket-tracking camera that keeps the target centered in the camera's image plane by means 
of pan/tilt controls (Gilbert et al., 1983). Weiss proposed the use of adaptive control for the 
non-linear time varying relationship between robot pose and image features in image-based 
servoing. Detailed simulations of image-based visual servoing are described for a variety of 
manipulator structures of 3-DOF (Webber &.Hollis, 1988). 
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Mana Saedan and M. H. Ang worked on relative target-object (rigid body) pose estimation 
for vision-based control of industrial robots. They developed and implemented an 
estimation algorithm for closed form target pose (Saedan & Marcelo, 2001). 
Image based visual controlling of robots have been considered by many researchers. They 
used a closed loop to control robot joints. Feddema uses an explicit feature-space trajectory 
generator and closed-loop joint control to overcome problems due to low visual sampling 
rate. Experimental work demonstrates image-based visual servoing for 4-DOF (Kelly & 
Shirkey, 2001). Rives et al. describe a similar approach using the task function method and 
show experimental results for robot positioning using a target with four circle features 
(Rives et al. 1991). Hashimoto et al. present simulations to compare position-based and 
image-based approaches (Hashimoto et al., 1991).  
Korayem et al. designed and simulated vision based control and performance tests for a 3P 
robot by visual C++ software. They minimized error in positioning of end effector and they 
analyzed the error using ISO9283 and ANSI-RIAR15.05-2 standards and suggested methods 
to improve error (Korayem et al., 2005, 2006).  A stationary camera was installed on the 
earth and the other one mounted on the end effector of robot to find a target. This vision 
system was designed using image-based-visual servoing. But the vision-based control in our 
work is implemented on 6R robot using both IBVS and PBVS methods. In case which 
cameras are mounted on the earth, i.e., the cameras observe the robot the system is called 
“out-hand" (the term “stand-alone" is generally used in the literature) and when one camera 
is installed on the end effector configuration is “in-hand”. The closed-form target pose 
estimation is discussed and used in the position-based visual control. The advantage of this 
approach is that the servo control structure is independent from the target pose coordinates 
and to construct the pose of a target-object from two-dimension image plane, two cameras 
are used. This method has the ability to deal with real-time changes in the relative position 
of the target-object with respect to robot as well as greater accuracy.  
Collision detection along with the related problem of determining minimum distance has a 
long history. It has been considered in both static and dynamic (moving objects) versions. 
Cameron in his work mentioned three different approaches for dynamic collision detection 
(Cameron, 1985, 1986). Some algorithms such as Boyse's and then Canny's solve the problem 
for computer animation (Boyse, 1979) and (Canny, 1986); while others do not easily produce 
the exact collision points and contact normal direction for collision response (Lin, 1993). For 
curved objects, Herzen etc have described a general algorithm based on time dependent 
parametric surfaces (Herzen et al. 1990). Gilbert et al. computed the minimum distance 
between two convex objects with an expected linear time algorithm and used it for collision 
detection (Gilbert & Foo, 1990). Collision detection along with the related problem of 
determining minimum distance has a long history. It has been considered in both static and 
dynamic (moving objects) versions. Cameron in his work mentioned three different 
approaches for dynamic collision detection. He mentioned three different approaches for 
dynamic collision detection. One of them is to perform static collision detection repetitively 
at each discrete time steps (Cameran & Culley, 1986).  
Using linear-time preprocessing, Dobkin and Kirkpatrick were able to solve the collision 
detection problem as well as compute the separation between two convex polytopes in 
O(log|A|.log|B|) where A and B are polyhedra and |.| denotes the total number of faces 
(Canny, 1986). This approach uses a hierarchical description of the convex objects and 
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extension of their previous work (Lin, 1993). This is one of the best-known theoretical 
bounds.
Some algorithms such as Boyse's and then Canny's solve the problem for computer 
animation (Gilbert & Foo, 1990); while others do not easily produce the exact collision points 
and contact normal direction for collision response (ANSI/RIA R15.05-2, 2002). For curved 
objects, Herzen et al. have described a general algorithm based on time dependent 
parametric surfaces (ISO9283). Gilbert et al. computed the minimum distance between two 
convex objects with an expected linear time algorithm and used it for collision detection 
(Ponmagi et al.).  
The technique used in our work is an efficient simple algorithm for collision detection 
between links of 6R robot undergoing rigid motion ,determines whether or not two objects 
intersect and checks if their centers distance is equal to zero or not. 
Due to undefined geometric shape of the end effector of the robot we have explained and 
used a color based object recognition algorithm in simulation software to specify and 
recognize the end effector and the target-object in image planes of the two cameras. In 
addition, capability and performance of this algorithm to recognize the end effector and the 
target-object and to provide 3D pose information about them are shown.  
In this chapter the 6R robot that is designed and constructed in IUST robotic research Lab, is 
modeled and simulated. Then direct and inverse kinematics equations of the robot are 
derived and simulated. After discussing simulation software of 6R robot, we simulated 
control and performance tests of robot and at last, the results of tests according to ISO9283 
and ANSI-RIAR15.05-2 standards and MATLAB are analyzed. 

2. The 6R robot and simulator environment 

This 6 DOFs robot, has 3 DOF at waist, shoulder and hand and also 3 DOF in it’s wrist that 
can do roll, pitch and yaw rotations (Figure 1). First link rotates around vertical axis in 
horizontal plane; second link rotates in a vertical plane orthogonal to first link’s rotation 
plane. The third link rotates in a plane parallel to second link’s rotation plane. 
The 6R robot and its environment have been simulated in simulator software, by mounting 
two cameras in fixed distance on earth observing the robot. These two cameras capture 
images from robot and it’s surrounding, after image processing and recognition of target-
object and end effector, positions of them are estimated in image plane coordinate, then 
visual system leads the end effector toward target. However, to have the end effector and 
target-object positions in global reference coordinate, the mapping of coordinates from 
image plan to the reference coordinates is needed. However, this method needs camera 
calibration that is non-linear and complicated. In this simulating program, we have used a 
neural network instead of mapping. Performance tests of robot are also simulated by using 
these two fixed cameras. 

3. Simulator software of the 6R robot 

In this section, the simulation environment for the 6R robot is introduced and its capability 
and advantages with respect to previous versions are outlined. This simulator software is 
designed to increase the efficiency and performance of the robot and predict its limitation 
and deficiencies before experiments in laboratory. In these packages by using a designed 
interface board, rotation signals for joints to control the robot are sent to it. 
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To simulate control and test of 6R robot, the object oriented software Visual C++6 was used. 
This programming language is used to accomplish this plan because of its rapidity and 
easily changed for real situation in experiments. In this software, the picture is taken in 
bitmap format through two stationary cameras, which are mounted on the earth in the 
capture frame module, and the image is returned in form of array of pixels. Both of the two 
cameras after switching the view will take picture. After image processing, objects in 
pictures are saved separately, features are extracted and target-object and end effector will 
be recognized among them according to their features and characteristics. Then 3D position 
coordinates of target-object and end effector are estimated. After each motion of joints, new 
picture is taken from end effector and this procedure is repeated until end effector reach to 
target-object.

Figure 1. 6R robot configuration 

With images from these two fixed cameras, positions of objects are estimated in image plane 
coordinate, usually, to transform from image plan coordinates to the reference coordinates 
system, mapping and calibrating will be used. In this program, using the mapping that is a 
non-linear formulation will be complicated and time consuming process so a neural 
network to transform these coordinates to global reference 3D coordinate has been designed 
and used. Mapping system needs extra work and is complicated compared to neural 
network. Neural networks are used as nonlinear estimating functions. To compute 
processing matrix, a set of points to train the neural system has been used. This collection of 
points are achieved by moving end effector of robot through different points which their 
coordinates in global reference system are known and their coordinates in image plane of 
the two cameras are computed in pixels by vision module in simulator software. The 
position of the end effector is recognized at any time by two cameras, which are stationary 
with a certain distance from each other. The camera No.1 determines the target coordinates 
in a 2-D image plan in pixels. The third coordinate of the object is also computed by the 
second camera.  
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A schematic view of simulator software and the 6R robot in its home position is depicted in 
Figure 2. In this figure, 6R robot is in homeposition and target-object is the red sphere. The 
aim of control process is guiding the end effector to reach the target-object within an 
acceptable accuracy. 

Figure 2. Schematic view of simulator software designed for 6R robot 

In this software, not only controlling of the 6R robot is possible but also performance tests 
according to ISO and ANSI standards are accomplished and results could be depicted. 

3.1 Capabilities of the simulator software 

Different capabilities of simulator software are introduced. In Figure 3 push buttons in 
dialog box of simulator environment are shown. ‘Link Rotation’ static box (in left of Figure 
3) is used for rotating each link of the 6R robot around its joint. Each of these rotations is 
performed in specified Steps; by adjusting amount of step, it is possible to place the end 
effector at desired pose in the robot’s workspace. ‘Frame positions’ panel depicts 3D 
position of selected frame in ‘Selected object’ list box and also x, y, z coordinate of selected 
frame can be defined by user and placed in that coordinate by pushing ‘Set’ button.  

Figure 3. Control buttons in simulator software of the 6R robot 

Init: At beginning of the program, this button is pushed to initialize variables in dialogue 
box.
GoHomePosition: Places frames and robot links in their homeposition and sets joint 
variables to their initial values. 
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Get Target: By pushing this button control process to guide end effector to reach the target 
is performed. 
Direct Kinematics: Performance tests for direct kinematics are accomplished. Joint variables 
are determined in a text file by user.  
Inverse kinematics: Inverse kinematics tests for the robot are done. Transformation matrix 
is defined by user in a text file. This file would be read and joint variables are determined to 
rotate joints to reach the end effector in desired pose.  
Continuous Path: It guides the end effector during continuous paths such as circle, line or 
rectangle to simulate performance tests. Paths properties are defined in text file by user. 
Look At: By pushing this button observer camera will look at robot at any pose. 
Camera switch: change the view between two stationary camera’s views. Switch from 
camera 1 to camera 2 or vice versa. 
GetOrient: Changes the orientation of selected camera frame. 

4. Visual servo control simulation 

The goal of this section is to simulate: 
• Position based visual servo control of the 6R robot  
• Image based visual servo control of the 6R robot 
• Compare these two visual servo control approaches 
To attain these goals different theories of computer vision, image processing, feature 
extraction, robot kinematics, dynamics and control are used. By two stationary cameras 
observing the robot and workspace, images are taken, after image processing and feature 
extraction, target-object and the end effector are recognized, and their 3D pose coordinates 
are estimated by using a neural network. Then the end effector is controlled to reach the 
target. For simulating image based visual servo control of the 6R robot one of the cameras 
are mounted on the end effector of the robot and the other one is stationary on the earth. 

4.1 Position based visual control simulation 

In simulator software, function Capture Frame takes picture in bitmap format through two 
stationary cameras mounted on the earth and the images are returned in the form of array of 
pixels. Both of the two cameras after switching the view will take picture (to estimate 3D 
pose information of frames). After image processing, objects in pictures are saved 
separately, features are extracted and target-object and end effector will be recognized 
among them according to their features and characteristics. Then 3D position coordinates of 
target-object and end effector are estimated. After each motion of joints, new picture is taken 
from end effector and this procedure is repeated until end effector reach to target-object.  
With images from these two fixed cameras, positions of objects are estimated in image plane 
coordinate, usually, to transform from image plan coordinates to the 3D reference 
coordinates system, mapping and calibrating will be used. In this program, a neural 
network has been used to transform these coordinates to global reference 3D coordinate. 
Mapping system needs extra work and is complicated compared to neural network. Neural 
networks are used as nonlinear estimating functions. A set of points has been used to train 
the neural system to compute processing matrix. Control procedure of robot to reach to 
target-object is briefly shown in Figs 4 and 5. 
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Figure 4. Robot at step 2 of control process in view of camera1 and camera2 

Figure 5. Robot at step 2 of control process in view of camera1 and camera2 

Figure 6. Robot at last step of control process reached to target-object in view of camera1 
and camera2 

Test steps: 

1. Initialize the simulator environment by clicking Init button. 
2. Select frame object No.1 from Selected object box. 
3. Specify its 3D x, y, z position in Frame Position and click Set icon. 
4. By Get Target icon, control process is accomplished. 
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Problems 1-2: 

Set the target-object in four corners of a rectangle with coordinates as: (3,0,-2), (3,0, 2), (-3,0,-
2), (-3,0, 2) and guide the end effector to attain the target-object. 
For reaching end effector in (2,-1, 2) position, compute joint angles and compare them with 
actual joint angles at the end of the control process. 

4.2 Mapping points in image plane to 3D system 

As mentioned before a neural network has been used to transform 2D coordinates of image 
planes to global reference 3D coordinate. Collection of points to train the net are achieved by 
moving end effector of robot through different points that their coordinates in global 
reference system are known and their coordinates in image plane of the two cameras are 
computed in pixels by VisionAction module in simulator software. The position of the end 
effector is recognized at any time by two cameras, which are fixed with a certain distance 
from each other. The camera No.1 determines the target coordinates in a 2D image plan in 
pixels. The 3rd coordinate of the object is also computed by information from the second 
camera. 
The used neural network is a back propagation perception kind network with 2 layers. In 
input layer (first layer) there are 4 node entrance including picture plan coordination pixels 
from two fixed cameras, to adapt a very fit nonlinear function 10 neurons in this layer with 
‘tan sigmoid’ function have been used. In the second layer (output layer) there are 3 neurons 
with 30 input nodes and 3 output nodes which are 3D coordinates x, y and z of object in the 
earth reference system. The transfer function in this layer is linear.  
This network can be used as a general function approximator. It can approximate 3D 
coordinates of any points in image plane of two cameras arbitrarily well, with given 
sufficient neurons in the hidden layer and tan sigmoid functions. As shown the training 
results in Figure 7 performance of trained net is 0.089374 in less than 40 iterations (epochs). 
This net approximates 3D coordinates of points well enough. 
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Figure 7. Training results of back propagation network 

The performance of the trained network can be measured to some extent by the errors on 
the training, validation and test sets, but it is useful to investigate the network response in 
more detail. A regression analysis between the network response and the corresponding 
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targets are performed. Network outputs are plotted versus the targets as open circles (Figure 
8). The best linear fit is indicated by a dashed line. The perfect fit (output equal to targets) is 
indicated by the solid line. In this trained net, it is difficult to distinguish the best linear fit 
line from the perfect fit line, because the fit is so accurate. It is a measure of how well the 
variation in the output is explained by the targets and there is perfect correlation between 
targets and outputs. Results for x, y and z directions are shown in Figure 8. 

(a) (b) (c)

Figure 8. Regression between the network outputs coordinates in a) x, b) y, c) z direction 
and the corresponding targets

4.3 Image based visual servo control simulation 

Image-based visual servo control uses the location of features on the image plane directly 
for feedback i.e. by moving the robot the camera's view (mounted on the end effector) 
changes from initial to final view. The features of images comprise coordinates of vertices, 
areas of the faces or any parameter and feature of the target-object that change by moving 
the end effector and so camera installed on it. 
For a robot with a camera mounted on its end effector the viewpoint and hence the features 
of images are functions of the relative pose of the camera and the target-object. In general, 
this function is non-linear and cross-coupled such that motion of the end effector will result 
in the complex motion of many features. For example, camera rotation can cause features to 
translate horizontally and vertically on the image plane. This relationship may be linearized 
about the operating point to become more simple and easy. 
In this version of simulator software the end effector is guided to reach the target-object, 
using feature based visual servo approach. In this approach global 3D position of target and 
the end effector are not estimated but features and properties of the target images from two 
cameras are used to guide the robot. 
For image based visual servo control simulation of the 6R robot, two cameras are used. One 
is mounted on the end effector (eye in hand) and the other one is fixed on the earth 
observing the robot within its workspace (eye to hand). Obviously eye in hand scheme has a 
partial but precise sight of the scene whereas the eye to hand camera has a less precise but 
global sight of it. In this version of simulator software, the advantages of both, stand-alone 
and robot-mounted cameras have been used to control robot’s motion precisely. Pictures are 
taken in bitmap format by both cameras through camera switch function then each image is 
returned in form of array of pixels.  
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System analysis is based on the stereovision theory and line-matching technology, using the 
two images captured by the two cameras. The vision procedure includes four stages, 
namely, calibration, sampling, image processing and calculating needed parameters.  

   
Figure 9. Robot in homeposition at beginning of control process in view of camera1 & 
camera2

   
Figure 10. Robot at step 2 of control process in view of camera1 and camera2 

Figure 11. Robot at step 5 of control process in view of camera1 and camera2 

First, the precision of this measuring system must be determined for simulator software. To 
maintain robot accuracy, calibration equipment is needed. In this simulator software, a self-
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calibrating measuring system based on a camera in the robot hand and a known reference 
object in the robot workspace is used. A collection of images of the reference target-object is 
obtained. From these the positions and orientations of the camera and the end effector, 
using image processing, image recognition and photogram metric techniques are estimated. 
The essential geometrical and optical camera parameters are derived from the redundancy 
in the measurements. By camera calibration, we can obtain the world coordinates of the start 
points of robots motion and the relation between images of the target-object and its relative 
distance to the end effector. So amount and direction of the end effector’s motion is 
estimated and feedback for visual servo system will be obtained.  

Figure 12. Robot at step 10 of control process in view of camera1 and camera2 

Figure 13. Robot at last step of control process reached to target-object in view of camera1 
and camera2 

At first control step as position of the target-object in 3D global reference system are not 
distinct, the end effector of the robot is moved to such a pose that target-object becomes 
visible in eye in hand camera view. It means that the end effector would find the target-
object within robot’s workspace. For this purpose, hand and wrist of the 6R robot rotate to 
reach the end effector to top point of workspace. By finding the target-object, the robot 
moves toward it to attain it. In each step, two cameras take picture from target and compare 
features in these images with reference image to assess required motion for each joints of the 
6R robot. This procedure is repeated until the camera mounted on the end effector observes 
the target-object in middle of its image plane in desired size. Also in this algorithm, pictures 
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taken by two cameras are saved in arrays of pixels and after threshold operations, 
segmentation, and labeling, the objects in the pictures will be extracted and each single 
frame is conserved separately with its number. Distance between end effector and target-
object will be estimated, by using inverse kinematics equations of 6R robot, each joint angle 
will be computed then by revolution of joints end effector will approach to target. Control 
procedure of robot to reach to target-object is briefly shown in Figs 9 to 13. 

4.4 Comparing IB and PB visual servoing approaches 

Vision based control can be classified into two main categories. The first approach, feature 
based visual control, uses image features of a target object from image (sensor) space to 
compute error signals directly. The error signals are then used to compute the required 
actuation signals for the robot. The control law is also expressed in the image space. Many 
researchers in this approach use a mapping function (called the image Jacobian) from the 
image space to the Cartesian space. The image Jacobian, generally, is a function of the focal 
length of the lens of the camera, depth (distance between camera (sensor) frame and target 
features), and the image features. In contrast, the position based visual control constructs the 
spatial relationship, target pose, between the camera frame and the target-object frame from 
target image features.  
In this chapter, both position based and image based approaches were used to simulate 
control of the 6R robot. The advantage of position-based approach is that the servo control 
structure is independent from the target pose reconstruction. Usually, the desired control 
values are specified in the Cartesian space, so they are easy to visualize. In position-based 
approach, target pose will be estimated. But in image based approach 3D pose of the target-
object and end effector is not estimated directly but from some structural features extracted 
from image (e.g., an edge or color of pixels) defined when the camera and end effector reach 
the target as reference image features, the robot is guided and camera calibrating for visual 
system is necessary.  
To construct the 3D pose of a target object from 2D image feature points, two cameras are 
needed. Image feature points in each of the two images have to be matched and 3D 
information of the coordinates of the target object and its feature points can then be 
computed by triangulation. The distance between the feature points in the target object, for 
example, can be used to help compute the 3D position and orientation of the target with 
respect to the camera. However, in systems with high DOF using image based approach and 
camera calibrating to guide the robot will be complicated, rather than in position-based 
approach we have used a trained neural net to transform coordinates. The image based 
approach may reduce computational delay eliminate the necessity for image interpretation 
and eliminate errors in sensor modeling and camera calibration. However, it does present a 
significant challenge to controller design since the process is non-linear and highly coupled. 
In addition, in image-based approach, guiding the end effector to reach target will be 
completed in some steps but in position-based, the end effector is guided directly toward 
the target-object. The main advantage of position-based approach is that it directly controls 
the camera trajectory in Cartesian space. However, since there is no control in the image, the 
image features used in the pose estimation may leave the image (especially if the robot or 
the camera are coarsely calibrated), which thus leads to servoing failure. Also if the camera 
is coarse calibrated, or if errors exist in the 3D model of the target, the current and desired 
camera pose will not be accurately estimated. Nevertheless, image based visual servoing is 
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known to be robust not only with respect to camera but also to robot calibration errors. 
However, its convergence is theoretically ensured only in a region (quite difficult to 
determine analytically) around the desired position. Except in very simple cases, the 
analysis of the stability with respect to calibration errors seems to be impossible, since the 
system is coupled and non-linear. 
In this simulator software control simulating of the 6R robot by using both position based 
and feature based approaches depicted that position based was faster but feature based 
more accurate. For industrial robots with high DOFs position based approach is used more, 
specially for performance testing of the robots we need to specify 3D pose of the end effector 
in each step so position based visual servo control is preferred.  
Results for comparing two visual servo control process PBVS and IBVS are summarized in 
Table 1. These two approaches are used to guide the end effector of the robot to reach the 
target that is in a fixed distance from the end effector of the robot. Final pose of the wrist is 
determined and compared with target-object pose so the positioning error and accuracy is 
computed. However, the time duration for these processes is counted and control speed is 
compared in this way.  

Visual Servoing 
Method

Control Accuracy 
(min error) 

Performance Speed 
(process duration) 

Computation
delay 

Controller
design 

PBVS Control 0.04 mm 20 sec 30 sec simple 

IBVS Control 0.01 mm 60 sec 10 sec highly
coupled 

Table1. Results for comparing PBVS and IBVS approaches 

5. The 6R robot performance tests simulation 

In this version of software, performance tests of robot including direct kinematics, inverse 
kinematics and motion of end effector in continues paths like circle, rectangle and line is 
possible. In point to point moving of end effector, each joint angle is determined and robot 
will move with joints rotation. In inverse kinematics test, desired position and orientation of 
end effector is determined in transformation matrix T. amount of joint angles that satisfy 
inverse equations will be found and wrist will be in desired pose. Two observer cameras 
take pictures and pose of end effector will be estimated to determine positioning error of 
robot.
Then using ISO9283, ANSI-RIA standards, these errors will be analyzed and performance 
characters and accuracy of the robot will be determined. Results of these standard tests are 
used to compare different robots and their performance. In this chapter, we represent some 
of these tests by using camera and visual system according to the standards such as ISO-
9283, and ANSI-RIA. 

5.1 Performance test of 6R robot according to ISO9283 standard 

a) Direct kinematics test of 6R robot (point-to-point motion) 
In this part of test, position accuracy and repeatability of robot is determined. With rotation 
of joints, the end effector will move to desired pose. By taking pictures with two stationary 
cameras and trained neural network, we will have position of end effector in 3D global 
reference frame. To determine pose error these positions and ideal amounts will be 
compared. Positioning error in directions x, y, z for 10 series of direct kinematics tests is 
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depicted in Figure 14. Amount of joint angles i are defined by user in a .txt file this file is 
read by software and through RotateJonint function, each joint rotates to its desired value. 
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Figure 14. The error schematics in x, y, z directions for direct kinematics tests 

b) Inverse kinematics test 
In this stage, desired pose of the end effector is given to robot to go there. Transformation 
matrix containing position and orientation of the wrist frame is given by user in txt file. By 
computing joint angles from inverse kinematics equations and rotation of joints, end effector 
will go to desired pose. By taking pictures with two fixed cameras and trained neural 
network, we will have position coordinates of end effector in 3D global reference frame. By 
comparing the desired position and orientation of wrist frame with attained pose, the 
positioning error will be determined. Positioning error in directions x, y, z for 10 series of 
inverse kinematics tests is shown in Figure 15.  

1 2 3 4
5 6 7

8 9
10

ex

ez

ey
-3

-2

-1

0

1

2

er
ro

r (
m

m
)

Test
ex ez ey

Figure 15. The error schematics in x, y, z directions for inverse kinematics tests 
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c) Continuous path test 
To determine accuracy of robot in traversing continues paths wrist of robot is guided along 
different paths. In simulator software, three standard paths are tested (direct line, circular 
and rectangular paths). Results of moving the end effector along these continuous paths are 
depicted in Figure 16. 
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Figure 16. Continuous path test results for the 6R robot 

5.2 Test steps 

In this part, procedure to accomplish visual servo control and performance tests in simulator 
software for the 6R robot are prescribed. To control the robot by vision system, two camera 
frames have been installed on the earth watching the robot and its environment in front and 
right view. The camera one is lpCamera1 installed in point A(0,14,-26) and the other one is 
lpCamera2 installed in B(28,4,-1). Monitoring is possible through each of these cameras. 
Then images from these two cameras were saved in bmp format and used to train the neural 
network to find 3D positions of points in reference base coordinate. Position of two cameras 
can be changed through Frame position toolbox in simulator software. After image 
processing and recognition of the end effector, estimating its coordinate in image plane by 
neural network this coordinate are transformed to global reference coordinate. These steps 
are programed in simulator software and are done automatically. Performance tests of robot 
include direct kinematics, and motion of the end effector in continuous paths like circle, 
rectangle and line. In point to point moving of end effector, each joint angle is determined 
and robot will move with joints rotation. These joint angles are defined by user in a txt file. 
Two observer cameras take pictures and pose of end effector will be estimated to determine 
positioning error of robot. Standards such as ISO9283, ANSI-RIA are used to specify the 
robot error and path accuracy for continuous paths. 

5.2.1 Direct kinematics test 

Define amount of joint angles i in angles.txt file in radian and save it. This file is read by 
software and through RotateJonint function, each joint rotates to its desired value. 
When end effector stops two cameras take pictures from it and through VisionAction 
function and trained neural net x,y,z of center of the end effector in 3D Cartesian system is 
determined. It is saved in out_dirk1.txt file. Compute positioning error of robot during 
direct kinematics test. 
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Problem-3 
In direct kinematics test, rotate joints in angles given in Table 2. Compute positioning error 
for each test in x, y, z directions and rotation of each joint and draw its graph. 

test 1 2 3 4 5 6 7 8 9,10 
1 0.85 1.57 -3 -2 3.14 4.71 -1.2 0.8 1.8 -1 
2 0 1 2 -1 -1 -0.5 1.57 0.75 -0.75 1.2 
3 -0.25 2 2 2 3.14 1.57 -0.75 -0.5 1 -1.2 
4 1 0 0.15 0.5 -0.5 0.75 0.5 -0.5 -0.5 0.5 
5 0.5 0 0.5 -3 -1.57 -0.75 0.3 0.2 0.2 -1 
6 1.1 0 -2 4 1 -1 0.5 -0.5 -0.5 1 

Table 2. Joint angles for direct kinematics test 

5.2.2 Inverse kinematics test 

In this stage, desired pose of the end effector is given to robot to go there. Transformation 
matrix containing position and orientation of the wrist frame is given in txt file. Specify 
position and orientation of end effector in a transformation matrix of the wrist with respect 
to base T, in Tmatrix.txt file. 
This matrix is used in InverseKinematics function to determine joint angles for desired pose 
of the end effector. By computing joint angles from inverse kinematics equations and 
rotation of joints, end effector will go to desired pose. By taking pictures with two fixed 
cameras and trained neural network, we will have position coordinates of end effector in 3D 
global reference frame.
Attained pose of end effector is saved in out_inv1.txt file. Positions and orientation error of 
this test are computed by data in this file. 
By comparing the desired position and orientation of wrist frame with attained pose, the 
positioning error will be determined.  
Problem-4

 desired position 
number x y z 

1 5.29 7.25 2.06 
2 9.38 11.37 7.51 
3 -12.08 -1.786 -0.22 
4 -2.84 12.4 0.599 
5 0.156 -13 1.09 
6 10.5 1.53 0.12 
7 3.34 3.57 -1.04 
8 -1.165 6 1.707 
9 -2.32 12 3.4 
10 -3.48 8 5.1 

Table 3. End effector positions for inverse kinematics test 



Simulation of Visual Servoing Control and Performance Tests 
of 6R Robot Using Image-Based and Position-Based Approaches 253

(x1, y1, z1)

(x2, y2, z2)

(x0, y0) a

b

In inverse kinematics test, define transformation matrix T with position of wrist according to 
Table 3. Orientation of the end effector can be defined by approach, normal and sliding 
vectors. Compute positioning error and accuracy of the robot in each test. Compare these 
errors with direct kinematics test results. 

5.2.3 Continuous path test 

To determine accuracy of robot in traversing continuous paths wrist of robot is guided along 
different paths. In simulator software, three standard paths are tested (direct line, circular 
and rectangular paths). 
Specify type of path c for circular, r for rectangular and l for linear path and their 
specifications in path.txt file and save it. Each path must be entered in a distinguished line 
and its parameters in that line. For example:  
Linear path: x1, y1, z1 is coordinates of start point of the linear path and x2, y2, z2 is for end 
point of the path. 
l, x1, y1, z1, x2, y2, z2. (Fig. 17) 

Figure 17. Coordinates specified for  line path in performance tests of the robot 

Rectangular path: x0, y0 determine coordinates of one corner of the rectangle and a, b are 
length and width of the rectangle. 
r, x0, y0, a, b. (Fig. 18) 

Figure 18. Coordinates specified for  rectangular path in performance tests of the robot 

For a circular path: x, y is coordinate of center of circular path and r is its radius. 
c, x, y, r. (Figure 19-c) 
Approach vector direction is normal to direction of paths i.e. wrist is always normal to its 
path. With pose of end effector and inverse kinematics equations of robot, joint angles will 
be computed. Joints rotate and end effector will be positioned along its path. Coordinates of 
end effector in global reference frame is determined by taking pictures with two fixed 
cameras and trained neural network. 
Compute path accuracy and error of the robot by data saved in out_path.txt file.  
Problem-5 
Test motion of the end effector for given paths as following and draw the traversed paths by 
the end effector and desired path in one graph to compare them. 
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Figure 19. Continuous paths for performance tests of the robot 

6. Error analysis of the 6R robot tests 

Now we analyze results of previous tests according to different standards and we determine 
performance parameters and accuracy of 6R robot according to ISO9283 and ANSI/RIA. 

6.1 Error analysis according to ISO9283 

In this standard some performance parameters of robot to position and path traversing such 
as pose accuracy and distance accuracy are determined. For direct, inverse kinematics and 
continuous path tests of the 6R robot results are depicted in Figure 20.   
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Figure 20. Position accuracy for the 6R robot in direct and inverse kinematics tests 
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Figure 21. Distance accuracy investigated in positioning tests according to ISO9283 

Traversing of the end effector in corners causes sharp changes in velocity so if these changes 
are high positioning and path accuracy of the robot must be controlled. For that, corners of 
paths are smoothed and curved to avoid sharp velocity changes. Error and accuracy of robot 
in traversing corners of paths are specified by cornering round off error (CR) and cornering 
overshoot parameters that are computed for the 6R robot during its motion in rectangular 
paths.  These results are summarized in Figure 22. 
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Figure 22. Cornering round off error and cornering overshoot in rectangular path tests 
according to ISO9283 

6.2 Error analysis according to standard ANSI-RIA 

Results of simulated tests in previous sections are analyzed with standard ANSI-RIA to 
compare with results of ISO9283.   

TEST AC AC CR CO 
line 0.67 0.21 - - 

rectangle 0.47 0.09 0.47, 0.20, 
0.17, 0.15 

1.03, 0.95, 
0.17, 0.26 

circle 0.48 0.25 - - 

Table 4.  Repeatability & cornering overshoot according to ANSI standard
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Cornering round off error CR in this standard is defined as the minimum distance between the 
corner point and any point on the attained path. Cornering overshoot CO is defined as the 
largest deviation outside of the reference path after the robot has passed the corner. For 
rectangular path test of 6R robot the value of CR and CO are calculated. (Table 4) The tests 
were repeated 10 times (n = 10). Two cameras, observing the end effector at fixed distance in 
specified periods, take picture from end effector and its environment. Its coordinates are 
achieved from image plan with position based visual system.  
To transform coordinates of wrist of robot to the reference frame as mentioned before, in 
this work we have used neural networks. Using neural networks we map coordinates from 
image plan into reference system, in order to have real distances. Maximum and mean path 
accuracy FOM and for rectangular path tests corner deviation error (CR) and cornering over 
shoot (CO) are listed in Table4. 

7. Experimental results for performance tests of 6R robot 

In this part, experimental results of the visual servo control and performance tests for the 6R 
robot are presented. To control the robot by vision system, two stationary webcams have 
been installed on the earth watching the robot and its environment in front and right view. 
Two webcams are installed in points A(0,-1,0) and B(1,0,0) as in Figure 23. Monitoring is 
possible through each of cameras. Then images from these two cameras were saved in bmp 
format and used to train the neural network to find 3D positions of points in reference base 
coordinate. After image processing and recognition of the end effector, estimating its 
coordinate in image plane by neural network this coordinate are transformed to global 
reference coordinate. These performance tests of robot include direct kinematics, and 
motion of the end effector in continuous paths like circle, rectangle and line. In point to 
point moving of end effector, each joint angle is determined and robot will move with joints 
rotation. Two observer cameras take pictures and pose of end effector will be estimated to 
determine positioning error of robot. Standards such as ISO9283, ANSI-RIA are used to 
specify the robot error and path accuracy for continuous paths. 

7.1 Direct kinematics test of 6R robot (point-to-point motion) 

In these tests, position accuracy and repeatability of robot is determined. Amount of rotation 
for each joint angle of the robot is specified in deg. With rotation of joints, the wrist will 
move to desired pose. By taking pictures with two stationary cameras and trained neural 
network, we will have position of end effector in 3D global reference frame. To determine 
pose error these positions and ideal amounts will be compared. Positioning error in 
directions x, y, z for 10 series of direct kinematics tests is depicted in Figure  24. Amount of 
joint angles i (deg) are defined by user in running program of the robot written by Delphi 
software. In image processing and object recognition algorithm due to noises and ambient 
light, there were many noises and deviation from simulation results. 

7.2 Continuous path test 

Pictures taken by two cameras are saved in bmp format and they are processed through 
vision algorithm written in VC++. After image processing, objects in pictures are saved 
separately, features are extracted and target-object and end effector will be recognized 
among them according to their features and characteristics. Then 3D position coordinates of 
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target-object and end effector are estimated. After each motion of joints, new picture is taken 
from end effector and this procedure is repeated until end of process. To determine accuracy 
of robot in traversing continuous paths wrist of robot is guided along different paths. In 
experimental tests, three standard paths are tested. 
a) Direct line 
To move end effector along a direct line its start and end must be determined. Approach 
vector direction is normal to direction of line path i.e. wrist is always normal to its path. 
With pose of end effector and inverse kinematics equations of robot, joint angles will be 
computed. Joints rotate and end effector will be positioned along its path. At each step, two 
stationary cameras take images from robot and its workspace. From these pictures and 
trained neural network coordinates of the wrist in global reference frame is determined. The 
positioning error is determined by comparing the ideal pose and actual one. Error of robot 
in traversing direct line path is shown in Figure 25-a. 
b) Circular path 
We investigate the accuracy, repeatability and error of robot on the circular continuous path 
traversing. Circle is in horizontal plane i.e. height of end effector is constant from earth level. 
Orientation of wrist is so that end effector is always in horizontal plane and normal to 
circular path and wrist slides along perimeter of circle. In this way sliding, approach and 
normal vectors are determined and inverse kinematics equations can be solved. During 
motion of wrist on the path, images have been taken from end effector using two webcams. 
In this way, end effector coordinates in image plan will be collected. Using neural network, 
image plan coordinates of points will be transformed to the reference frame. The desired 
path and actual path traversed by robot is shown in Figure  25-b. 

Figure 23. Webcams positions in experimental tests of robot (front and right cameras) 
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Figure 24. The error schematics in x, y, z directions for direct kinematics tests of the 6R robot 
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Figure 25. The error investigated in continuous path  

c) Rectangular path 
Path accuracy for movement of the end effector in rectangular path was also tested. 
Orientation of end effector is tangent to path. The desired path and actual path for 
rectangular path have been drawn in Figure 25-c. 

8. Collision detection for the 6R robot using spheres 

Collision detection or contact determination between two or more objects is important in 
robotics simulation and other computer simulated environments. Objects in simulated 
environments are stationary or dynamic. The previous works are mostly restricted to 
models in static environments. However, some of them concern the more sophisticated 
algorithms, such as BSP (one of the commonly used tree structure, binary space partitioning 
tree, to speed up intersection tests in CSG ,constructive solid geometry) (Lin, 1993) for 
dynamic simulation environments. We have used an efficient simple algorithm for collision 
detection and contact determination between links of 6R robot undergoing rigid motion. 
This technique however is a quite simple procedure but it is very useful also can be used for 
simulated environments with many dynamic objects moving with high speed. The main 
characteristic of this algorithm is its simplicity and efficiency. It has been implemented on 
simulation of control and performance tests of 6R robot to avoid contact of different parts of 
robot with each other and surrounding objects.  
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Main points in a simulation of collision among objects can be separated into three parts: 
collision detection, contact area determination, and collision response (Ponamgi et al). In 
this research, we have considered the first part to prevent penetration of links of the 6R 
robot in each other during their motion. 
To determine whether or not two objects intersect, we must check if distance between their 
border edges is equal to zero or not. So lower bound for the distance between each pair of 
objects is equal to zero. In this paper the collision detection technique uses spheres attached 
to different parts of robot and moved as well as them. These spheres are arranged compactly 
enough to fit the robot shape so we have used a large number of spheres to do. 
In an environment with D moving objects and S stationary objects, number of possible 

collision for each pair of the objects will be: DS
D

+
2

 pairs at every time step. Which 

determining all of them would be time consuming as D and S are large. By considering the 
robot geometry and its joints rotations we can determine which pairs of spheres may contact 
and which pairs may not. So the total number of pairwise collisions will decrease and much 
time would be saved.  
In Figure 26 schematic shape of 6R robot and bounding spheres on different parts of it are 
shown. Diameter of each sphere is determined according to size of object which is bounded 
by the sphere. 

 Figure 26. The 6R robot and bounding spheres 

Figure 27. Collision between two spheres in the 6R robot 
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8.1 Colliding bounding spheres in the 6R robot 

To avoid collision among different parts of the 6R robot, links and objects in simulated 
environment are bounded by small spheres (Figure 26). As joints of robot revolute, the links 
may collide and penetrate each other. We consider the situation when the tip of end effector 
collides to the waist of the robot (Figure 27) and find intersection point of two collided 
spheres. This procedure is the same for each pair of colliding spheres.  
The simplest possible way to test collision between two bounding spheres is to measure the 
squared distance between their centers and to compare the result with the squared sum of 
their radii.   

9. Object recognition algorithm 

After taking pictures by two fixed cameras, these images must be processed to determine 3D 
information of the target-object and the end effector of robot and to estimate their pose in 
Cartesian global coordinate. So recognition of objects in the visual system is a key task. But 
the end effector of the 6R robot does not have any especial basic shape so we decided to use 
a definite color for it and it would be recognized according to its color. Upon this in 
simulation of the object recognition we used color based algorithm. 
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Figure 28. Performance of simulation color based object recognition algorithm to determine 
pose of (a) the end effector (b) target-object 

Object recognition algorithm has two steps: first to assess objects of interest in pictures taken 
by two cameras and then to provide required information (e.g. pose) about these objects. To 
do the first step, the model or properties of objects of interest are provided for the vision 
system. As said before the end effector is not in basic geometric shape and also due to its roll 
and pitch rotations its dimensions and appearance are not the invariant in two cameras’ 
view each time. So we can not use dimensions or distance set to recognize the end effector. 
We must identify the image features that are invariant with respect to image scaling, 
translation and rotation and partially invariant with respect to illumination changes. Also 
they are minimally affected by noise and small distortions. Lindeberg showed that under 
some rather general assumptions on scale invariance, the Gaussian kernel and its 
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derivatives are the only possible smoothing kernels for scale space analysis (Low). To 
achieve rotation invariance and a high level of efficiency, we have defined two special RGB 
color for the target-object and the end effector of the 6R robot separately. By image 
processing RGB of each pixel in images are found and if they are the same as RGB of the 
object of interest, coordinate of those pixels will be saved and the center position of them in 
two image plane will be determined and then by using neural network we will have 3D 
coordinates of target-object and the end effector in global reference frame. The results 
obtained from simulation of color based object recognition algorithm for the end effector 
and target-object are presented in Figure 28. In these figures error of position estimation of 
the end effector and target-object in x, y and z directions are shown. 

10. Conclusion 

In this chapter, both position based and image based approaches were used to simulate 
control of the 6R robot. The IBVS control approach, uses image features of a target-object 
from image (sensor) space to compute error signals directly. The error signals are then used 
to compute the required actuation signals for the robot. The control law is also expressed in 
the image space. Many researchers in this approach use a mapping function (called the 
image Jacobian) from the image space to the Cartesian space. The image Jacobian, generally, 
is a function of the focal length of the lens of the camera, depth (distance between camera 
(sensor) frame and target features), and the image features. In contrast, the PBVS control 
constructs the spatial relationship, target pose, between the camera frame and the target-
object frame from target image features. Many construction algorithms have been proposed. 
The advantage of position-based approach is that the servo control structure is independent 
from the target pose reconstruction. Usually, the desired control values are specified in the 
Cartesian space, so they are easy to visualize. In position-based approach, target pose will be 
estimated. But in image based approach 3D pose of the target-object and end effector is not 
estimated directly but from some structural features extracted from image (e.g., an edge or 
color of pixels) defined when the camera and end effector reach the target as reference 
image features, the robot is guided and camera calibrating for visual system is necessary. 
Test errors have been analyzed by using different standards and MATLAB to compute 
performance parameters of 6R robot such as accuracy, repeatability, and cornering 
overshoot. Performance parameters computed according to ANSI and ISO standards are 
fairly close to each other. Statistical quantities computed by MATLAB also certificate 
standards analysis. In simulator environment, we have determined collision between two 
parts of robot by using bounding-spheres algorithm. To improve the accuracy of the 
collision detection we have used very small bounding spheres, breaking links of robot into 
several parts and enclosing each of them in a bounding sphere of its own. 
Finally simulation results of color based object recognition algorithm used to provide 
required information (e.g. pose) about target-object and the end effector were presented.  
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1. Introduction 

 Image magnification is among the basic image processing operations and has many 
applications in a various area. In recent, multimedia techniques have advanced to provide 
various multimedia data that were digital images and VOD. It has been rapidly growing 
into a digital multimedia contents market. In education, many researches have used e-
learning techniques. Various equipments - image equipments, CCD camera, digital camera 
and cellular phone – are used in making multimedia contents. They are now widespread 
and as a result, computer users can buy them and acquire many digital images as desired. 
This is why the need to display and print them also increases (Battiato & Mancuso, 2001; 
Battiato et al., 2002).  
However, such various images with optical industry lenses are used to get high-resolution. 
These lenses are not only expensive but also too big for us to carry. So, they are using the 
digital zooming method with the lenses to solve the problem. The digital zooming method 
generally uses the nearest neighbor interpolation method, which is simpler and faster than 
other methods. But it has drawbacks such as blocking phenomenon when an image is 
enlarged. Also, to improve the drawbacks, there exist bilinear interpolation method and the 
cubic convolution interpolation commercially used in the software market. The bilinear 
method uses the average of 4 neighborhood pixels. It can solve the blocking phenomenon 
but brings loss of the image like blurring phenomenon when the image is enlarged. Cubic 
convolution interpolation improved the loss of image like the nearest neighbor interpolation 
and bilinear interpolation. But it is slow as it uses the offset of 16 neighborhood pixels 
(Aoyama & Ishii, 1993; Candocia & Principe, 1999;  Biancardi et al., 2002).  
A number of methods for magnifying images have been proposed to solve such problems. 
However, proposed methods on magnifying images have the disadvantage that either the 
sharpness of the edges cannot be preserved or that some highly visible artifacts are 
produced in the magnified image. Although previous methods show a high performance in 
special environment, there are still the basic problems left behind. Recently, researches on 
Human vision processing have been in the rapid progress. In addition, a large number of 
models for modeling human vision system have been proposed to solve the drawbacks of 
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machine vision such as object recognition and object detection (Suyung, 2001). In the field of 
optical neural, many researches have been conducted in relation with physiology or biology 
to solve the problem of human information processing. Features of biological visual systems 
at the retinal level serve to motivate the design of electronic sensors. Although commercially 
available machine vision sensors begin to approach the photoreceptor densities found in 
primate retinas, they are still outperformed by biological visual systems in terms of dynamic 
range, and strategies of information processing employed at the sensor level (Shah & 
Levine, 1993).  However, most of the retina models have focused only on the characteristic 
functions of retina by generalizing the mechanisms, or for researcher's convenience or even 
by one’s intuition. Although such a system is efficient to achieve a specific goal in current 
environment, it is difficult to analyze and understand the visual scene of a human body. The 
current visual systems are used in very restricted ways due to the insufficiency of the 
performance of algorithms and hardware.  
Recently, there are many active researches to maximize the performance of computer vision 
technology and to develop artificial vision through the modeling of human visual 
processing. Artificial vision is to develop information processing procedures of the human 
visual system based on the biological characteristics. Compared with the machine vision 
technology, it can be effectively applied to industry. By investing over 20 billion yen 
between 1997 and 2016, Japan is conducting research on the areas of machine intelligence, 
voice recognition and artificial vision based on the information processing mechanism of the 
brain. By the National Science Foundation (NSF) and the Application of Neural Networks 
for Industries in Europe (ANNIE), America and Europe are also conducting research on 
artificial vision, as well as artificial intelligence and voice recognition using the modeling of 
the brain's information processing (Dobelle, 2000). 
This paper presents a method for magnifying images that produces high quality images 
based on human visual properties which have image reduction on retina cells and 
information magnification of input image on visual cortex. The rest of this paper is 
organized as follows. Section 2 presents the properties on human visual system and related 
works that have proposed for magnifying image. Section 3 presents our method that extracts 
the edge information using wavelet transform and uses the edge information base on the 
properties of human visual processing. Section 4 presents the results of the experiment and 
some concluding remarks are made in Section 5. 

2. Related works and human visual processing 

2.1 Related works 

The simplest way to magnify images is the nearest neighbor interpolation by using the pixel 
replication and basically making the pixels bigger. It is defined by equation (1). However, 
the resulting magnified images have a blocking phenomenon (Gonzalez & Richard, 2001).  

( ) ( )

( ) imagemagnified aisji,Z where,
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Other method is the bilinear interpolation, which determines the value of a new pixel based 
on a weighted average of the 4 pixels in the nearest 22 × neighbourhood of the pixels in the 
original image (Gonzalez & Richard, 2001). Therefore this method produces relatively 
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smooth edges with hardly any blocking and is better than the nearest neighbor but appears 
blurring phenomenon. It is defined as equation (2). 

( ) ( ) ( ) ( ) ( )[ ]
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12
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More elaborating approach uses cubic convolution interpolation which is more 
sophisticated and produces smoother edges than the bilinear interpolation. Bicubic 
interpolation uses a bicubic function using 16 pixels in the nearest 44 × neighborhood of the 
pixel in the original image and is defined by equation (3). This method is most commonly 
used by image editing software, printer drivers and many digital cameras for re-sampling 
images. Also, Adobe Photoshop offers two variants of the cubic convolution interpolation 
method: bicubic smoother and bicubic sharper. But this method raises another problem that 
the processing time is too long due to the computation for the offsets of 16 neighborhood 
pixels (Keys, 1981). 
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where a=0, or -1 (3) 

Recently, research on interpolation images taking into account the edges has gained much 
attention. (Salisbury et al., 1996) proposed methods that search for edges in the input images 
and use them to assure that the interpolation does not cross them. The problem is how to 
define and find the important edged in the input image. 
Other edge-adaptive methods have been proposed by (Li & Orchard, 2001). The commercial 
software Genuine Fractals also used an edge adaptive method to magnify images, but the 
details of the algorithm are not provided. Currently, the methods presented in (Muresan & 
Parks, 2004) are the most widely known edge-adaptive methods. They can well enough avid 
jagged edges, but have limitation that they sometimes introduce highly visible artifacts into 
the magnified images, especially in areas with small size repetitive patterns (Johan & 
Nishita, 2004).  
In section 3, we will propose an efficient method by image reduction and edge enhancement 
based on the properties on human visual processing. 

2.2 Human visual processing 

In the field of computer vision, many researches have been conducted in relation with edge 
information to solve the problem of magnification. Image information received from retina 
in Human visual system is not directly transmitted to the cerebrum when we recognize it. 
This is why there are many cells playing in Human visual system (Bruce, 2002).  
First, the visual process begins when visible light enters the eye and forms images on the 
retina, a thin layer of neurons lining the back of the eye. The retina consists of a number of 
different types of neurons, including the rod and cone receptors, which transform light 
energy into electrical energy, and fibers that transmit electrical energy out of the retina in 
the optic nerve. Second, The signals generated in the receptors trigger electrical signals in 
the next layer of the retina, the bipolar cells, and these signals are transmitted through the 
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various neurons in the retina, until eventually they are transmitted out of the eye by 
ganglion cell fibers, These ganglion cell fibers flow out of the back of the eye and become 
fibers in the optic nerve. Ganglion cells can be mapped into P-cells and M-cells. P-cells 
contain major information of images on 'what', whereas M-cells contain edge information of 
images. That is, information related to perceiving 'What' is transmitted to P-cells; and P-cells 
comprise 80% of total ganglion cells and minimize the loss during transmission. Whereas, 
information related to 'Where' is sent to M-cells; and M-cells comprise 20% of total ganglion 
cells (Duncan, 1984) 
The biological retina is more than just a simple video camera. It not only converts optical 
information to electrical signals but performs considerable processing on the visual signal 
itself before transmitting it to higher levels. Various local adaptation mechanisms extend the 
retina’s dynamic range by several orders of magnitude. In order to meet the transmission 
bottleneck at the optic nerve, the retina extracts only those features required at later stages 
of visual information processing (suyung, 2001). 

Figure 1. The processing steps of human vision system 

Third, most of these optic nerve fibers reach the lateral geniculate nucleus (LGN), the first 
major way station on the way to the brain. The LGN is a bilateral nucleus, which means that 
there is an LGN on the left side of the brain, and also one on the right side. Finally, fibers 
transfer from the LGN to the primary visual receiving area, the striate cortex, or V1 in the 
occipital lobe. In conclusion, the main properties in human visual processing are as follows: 
First, in retinal cells, the large difference between the number of receptors and the number 
of ganglion cells means that signals from many receptors converge onto each ganglion cell. 
Second, in visual cortex, this cell responds to the directions such as vertical, horizontal and 
orthogonal. Finally, the signal from ganglion cells coming from retina in fovea needs more 
space on the cortex than the signals from retina in periphery. The result is the cortical 
magnification factor (Bruce, 2002).  
We propose the magnification method considering the properties of human visual 
processing in section 3. 

Retina

Photoreceptor
Bipolar cell

Ganglion cell 

LGN
Visual cortex 
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3. Image magnification by the properties of human vision system 

Based on the properties of human visual processing discussed in section 2, we now describe 
a magnification method for improving the performance of conventional image 
magnification methods. 
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Figure 2. Proposed algorithm 
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Human vision system does not transfer image information from retina to visual cortex in the 
brain directly. By the properties of retinal cells, there is the reduction of information when 
vision information is transferred from receptors to ganglion cells. In addition, the reduced 
information from retina is transfer to the visual cortex with the magnified information. We 
proposed the magnification method with these properties. The proposed magnification uses 
edge information which is not used in interpolation based image processing. In image 
processing, the interpolated magnified image uses the average or offset of neighborhood 
pixels. It is not an ideal method since it only uses neighborhood pixels. 
 The edge information is important to distinguish the background and object. If a pixel were 
edge information, it wouldn't be able to distinguish the background and object using 
neighborhood pixels. It was insufficient to detect the edge information. In this paper, we 
calculated the edge information of a whole image. In order to solve the problem of 
magnification, the direction of the edge information will be considered. The schematic 
diagram of the method is shown as Fig. 2. 

3.1 Edge Detection 

First, we calculated the edge information from the input image. There are many methods in 
edge detection such as Laplacian operator, Sobel operator and Gaussian operator. In this 
paper, we calculated the edge information by using the DoG (Difference of two Gaussian) 
function, which is used in the human vision system. Wilson proposed the model that has 
been detected the edge information by the simulated results. It was simulated in the retina 
of the human vision system using the second derivative function G2∇  (LoG, Laplacian of a 
Gaussian). According to Marr and Hildreth, the DoG function has similar result to G2∇ .
And it is faster and more effective about the intensity change detection of the image 
than G2∇  (Dowling, 1987; suyung, 2001). In this paper, by setting the distance from the 
center as r, in equation (4), one obtains temporal change in the input image by the Gaussian 
filter.
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 Consequently, by setting the excitatory synapsing standard deviation as eσ , inhibitory 
synapsing standard deviation as iσ , excitatory synapsing distribution as ( )r,G ee σ , and 
inhibitory synapsing distribution as ( )r,G ii σ , in equation (6), one obtains a symmetrical 
structure using the DoG function. It was optimal filter to the signal stimulated overlapping 
each other cells when the Gaussian function's standard deviation ratio is 61./ ei =σσ . The 
DoG function has similar result to the cell's reaction in the human vision. 
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However, it has less edge information than the other second derivative functions (Laplacian 
operator and Sobel operator) which are used mostly in image processing. In order to solve 
the problem, we propose an algorithm that emphasizes the image by using contrast regions. 
The Unsharp mask tool is used to emphasize an image in image processing. However, it 
causes a loss of the image and that adds the noise to the image and in result, it drastically 
reduces intensity gradient when the image is sharpened spatial edges, namely, emphasized 
contrast region. To solve the problem, we added the convoluted high-boost filter and edge 
information again. 

[ ] [ ] [ ]j,iHBj,iGj,iM ageIm +=
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111
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−=

α

αα

w

/wHB  (7) 

HB is a high-boost filter. It sharpened the image and added to [ ]j,iG . By setting 19 −= αw ,
in equation (7), one obtains the enhanced edge information [ ]( )j,iM ageIm . The proposed 
method improves sensitivity to detect the edge of an object. 

3.2 Magnification using Combination & Decomposition 

In the field of computer vision, many researches have been conducted in relation with edge 
information to solve the problem of magnification. The edge information was composed of 
through high frequencies. Accordingly, it is important to restore the high frequency in 
magnification to solve the problem like blurring phenomenon. In image processing, a 
possible solution is edge detection that uses the second derivation function. But, it causes a 
loss of image by the error of edge information. It is the zero crossing in edge detection that 
detects edge gradients (Schultz & Stevenson, 1994; Gonzalez & Richard, 2001). We proposed 
the magnification algorithm that considered the direction of edge. To solve the problem like 
the error of edge information, we calculated each direction (horizontal, vertical and 
diagonal) to the input image and calculated the edge information. We used the difference 
operation which is the simplest and fastest operation in edge detection using gradient 
function. In equation (8), we calculated the horizontal and vertical direction by using the 
difference operation that calculated the increment of the input image ( )1i + . It is the 
difference in pixel brightness to the neighborhood pixel, namely, which calculated the 
gradient.  

[ ] [ ] [ ]j,iPj,iPj,iP ageImageImSy
−+= 1  (8) 

[ ] [ ] [ ]j,iPj,iPj,iP ageImageImSx
−+= 1  (9) 
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By setting the input image to ageImP , in equation (8), one obtains the vertical direction of input 
image

ySP . In the same way, in equation (9), one obtains the horizontal direction of the input 

image 
xSP where i and j are the vertical and horizontal index of image. 

The diagonal direction uses the vertical direction and horizontal direction. By setting the 
diagonal direction to 

zSP , in equation (10), one calculates the AND operation to the vertical 
direction and horizontal direction.  

[ ] [ ] [ ]j,iP&j,iPj,iP
yxz SSS =  (10) 

 Information on the vertical, horizontal and diagonal direction of the input image was 
calculated through the use of equation (8), (9) and (10). In the same way, information on the 
vertical, horizontal and diagonal direction of the detected edge information was calculated 
by using equation (11).  
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In equation (11), ageImM  is the detected edge information, 
ySM is the vertical direction in the 

detected edge information, 
xSM is the horizontal direction, and 

zSM  is the diagonal 
direction. 
Thus, we calculated 7 pieces of information collected from the input image. They were the 
detected edge information, vertical, horizontal, diagonal direction of input image and 
vertical, horizontal, diagonal direction of the detected edge information. They all have a 
position, direction and edge information. However, they have different quantities of 
information in regards to the edge. It holds different quantities of information for the 
vertical direction of the input image and detected edge information. The difference in the 
quantity of information in the vertical and horizontal direction is due to the edge. By 
equation (8), the detected edge information was an error on the left hand side of the ideal 
detecting edge information by the difference operation. In the same way, by equation (11), 
the detected edge information has an error on the right hand side of the ideal detecting edge 
information by the difference operation. To solve this problem, we calculated the ADD 
operation to the same direction of the detected edge information. And we processed the 
combination and decomposition considering the quantity of image information (pixel 
intensity) and edge information in each direction, the input image and 7 pieces of 
information. Therefore, most of the information contained is made up of the input image, 
the vertical direction of input image and the vertical direction of the detected edge 
information.  
By setting, the larger quantity of image information and direction as 

ycomplexVC  and the 

smaller quantity of image information and direction as 
xcomplexVC , we can process the 

combination and decomposition in equation (12). 
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By setting, the input image as ageImP , the vertical direction of the input image as 
ySP , and the 

vertical direction of the detected edge information as 
ySM , one obtains a large quantity of 

image information and direction. This is known as 
ycomplexVC . The 

ycomplexVC is a combination 

of the input image and the vertical direction that is added to the vertical direction of the 
input image and the detected edge information. When the combination of the larger 
quantity of images is created, we process the ADD operation. In the same way, when there 
is a decomposition of the smaller quantity of images, we process the difference operation. 
Accordingly, we emphasized the edge information by using the ADD and difference 
operation for the combination and decomposition.  
First, we calculated the ADD operation to the same direction of the input image and the 
calculated edge information. The 

xcomplexVC  was a combination of the larger quantity of 
images which was in the horizontal direction and this was added to the horizontal direction 
of the input image and the calculated edge information. When there is a combination of the 
larger quantity of images, we use the ADD operation. 
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By setting, the horizontal direction of the input image as 
xSP , the diagonal direction of the 

input image as 
zSP , the horizontal direction of the detected edge information as 

xSM and the 
diagonal direction of the detected edge information as 

zSM , in equation (13), one obtains a 
smaller quantity of image information and its direction is 

xcomplexVC . The 
xcomplexVC  is a 

combination of the horizontal and diagonal direction that was added to the horizontal and 
diagonal direction of the input image and the detected edge information. In the same way as 
equation (12), when it is a decomposition of the smaller quantity of images, we process the 
difference operation. Likewise, we emphasized the edge information by using the ADD and 
difference operation for the combination and decomposition. We were able obtain the 
magnified image by using the combination and decomposition to solve the problem of loss 
of high frequencies. But the magnified image has too much information on high frequencies 
in the 

ycomplexVC and
xcomplexVC . To reduce the risk of error of edge information in high 

frequencies, we processed the normalizing operation by using the Gaussian operator. The 
Gaussian operator is usually used in analyzing brain waves in visual cortex. And once a 
suitable mask has been calculated, and then the Gaussian smoothing can be performed 
using standard convolution methods. 
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 By setting, the average of input image as δ , the Gaussian operator as 
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, thus one 

can obtain the magnified image 
xcomplexVC .

In summary, first, we calculated edge information by using the DoG function and 
emphasized the contrast region by using the enhanced Unsharp mask. We calculated each 
direction of the input image and edge information to reduce the risk of error in the edge 
information. To evaluate the performance of the proposed algorithm, we compared it with 
the previous algorithm that was nearest neighborhood interpolation, bilinear interpolation 
and cubic convolution interpolation. 

4. Experimental results 

 We used the Matlab 6.5 in a Pentium 2.4GHz, with 512MB memory, in a Windows XP 
environment and simulated the computational retina model based on the human visual 
information processing that is proposed in this paper. We used the SIPI Image Database and 
HIPR packages which is used regularly in other papers on image processing. SIPI is an 
organized research unit within the School of Engineering founded in 1971 that serves as a 
focus for broad fundamental research in signal and image processing techniques at USC. It 
has studied in all aspects of signal and image processing and serviced to available SIPI 
Image Database, SIPI technical reports and various image processing services. The HIPR 
(Hypermedia Image Processing Reference) serviced a new source of on-line assistance for 
users of image processing. The HIPR package contains a large number of images which can 
be used as a general purpose image library for image processing experiments. It was 
developed at the Department of Artificial Intelligence in the University of Edinburgh in 
order to provide a set of computer-based tutorial materials for use in taught courses on 
image processing and machine vision. In this paper, we proposed the magnification by 
using edge information to solve the loss of image problem like the blocking and blurring 
phenomenon when the image is enlarged in image processing. In performance, the human 
vision decision is the best. However, it is subjective decision in evaluating the algorithm. We 
calculate the PSNR and correlation to be decided objectively between the original image and 
the magnified image compared with other algorithms.  
First, we calculated the processing time taken for the 256×256 sized of the Lena image to 
become enlarged to a 512×512 size. In Fig. 3, the nearest neighborhood interpolation is very 
fast in processing time (0.145s), but it loses parts of the image due to the blocking 
phenomenon. The bilinear interpolation is relatively fast in the processing time (0.307s), but 
it also loses parts of the image due to the blurring phenomenon. The cubic convolution 
interpolation does not have any loss of image by the blocking and blurring phenomenon, 
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but is too slow in the processing time (0.680) because it uses 16 neighborhood pixels. The 
proposed algorithm solved the problem of image loss and was faster than the cubic 
convolution interpolation in the processing time (0.436s).  
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Figure 3. Comparison of the processing time of each algorithm 
To evaluate the performance in human vision, Fig. 4, shows a reducion of  512×512 sized 
Lena image to a 256×256 sized by averaging 3×3 windows. This reduction is followed by an 
enlargement to the 512×512 sized image through the usage of each algorithm. We enlarged 
the central part of the image 8 times to evaluate vision performance. In Fig. 4, we can find 
the blocking phenomenon within vision in the nearest neighborhood interpolation (b). And 
we can also find the blurring phenomenon within vision in the bilinear interpolation(c). The 
proposed algorithm has a better resolution than the cubic convolution interpolation in Fig. 
4(d, e). 
We calculated the PSNR for objective decision. By setting the original image as X, and the 
magnified image as *X , in equation (15), one obtains the PSNR.  
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 The MSE is a mean square error between the original image and the magnified image. 
Generally, the PSNR value is 20~40db, but the difference can not be found between the 
cubic convolution interpolation and the proposed algorithm in human vision. In table 1, 
there exist difference between two algorithms. The bilinear interpolation has a loss of image 
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due to the blurring phenomenon, but the PSNR value is 29.92. This is better than the cubic 
convolution interpolation which has a value of 29.86. This is due to the reduction taken 
place by the averaging method which is similar to the bilinear interpolation. We can 
conclude from the table 1 that the proposed algorithm is better than any other algorithm as 
the PSNR value is 31.35.  
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To evaluate objectively in another performance, we calculated the cross-correlation in 
equation (16). In table 1, the bilinear interpolation is better than the cubic convolution 
interpolation in regards to the PSNR value. It also has similar results in cross-correlation. 
This is because we reduced it by using the averaging method and this method is similar to 
the bilinear interpolation. Thus we can conclude that the proposed algorithm is better than 
any other algorithm since the cross-correlation is 0.990109. 

(a) 512×512 sized image          (b) nearest neighborhood interpolation 

       
(c) bilinear interpolation      (d) cubic convolution interpolation    (e) proposed algorithm 

Figure 4. Comparison of human vision of each algorithm 
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Evaluation performance

Magnification method 
PSNR(db) Cross-correlation 

Nearest neighborhood interpolation 19.54 0.978983 

Bilinear interpolation 29.92 0.985436 

Cubic convolution interpolation 29.86 0.985248 

Proposed algorithm 31.35 0.990109 

Table 1. Comparison of Evaluation performance of each algorithm by averaging 3×3 
windows

Performance

Magnification method 
PSNR(db) Cross-correlation 

Nearest neighbor interpolation 29.86 0.987359 

Bilinear interpolation 30.72 0.989846 

Cubic convolution interpolation 31.27 0.991336 

Proposed algorithm 31.67 0.991363 

Table 2. Comparison of Evaluation performance of each algorithm by the mean of a 3×3 
window

Standard images

Magnification method 
Baboon Peppers Aerial Airplane Boat 

Nearest neighbor interpolation 20.38 26.79 22.62 32.55 25.50 

Bilinear interpolation 23.00 31.10. 25.46 33.44 25.50 

Cubic convolution interpolation 23.64 31.93 26.64 33.72 29.39 

Proposed algorithm 23.81 32.04 27.65 34.52 30.27 

Table 3. Comparison of the PSNR of our method and general methods in several images 



Vision Systems: Applications 276

In Table 2, we reduced the image by the mean of 3×3 windows to evaluate objectively in 
another performance. And then, we enlarged to a 512×512 sized image by using each 
algorithm. We calculated the PSNR and cross-correlation again. The bilinear interpolation's 
PSNR value is 30.72, and the cubic convolution interpolation's PSNR value is 31.27. Thus, 
the cubic convolution interpolation is better than the bilinear interpolation. The proposed 
algorithm is better than any other algorithm in that the PSNR and cross-correlation can be 
obtained by using reduction through averaging and reduction by the mean. The proposed 
algorithm uses edge information to solve the problem of image loss. In result, it is faster and 
has higher resolution than cubic convolution interpolation. Thus, we tested other images 
(Baboon, Pepper, Aerial, Airplane, and Barbara) by the cross-correlation and PSNR in Table 
3 and 4. Table 3 and 4 show that the proposed algorithm is better than any other methods in 
PNSR and Correlation on other images. 

Standard images

Magnification method 
Baboon Peppers Aerial Airplane Boat 

Nearest neighbor interpolation 0.834635 0.976500 0.885775 0.966545 0.857975 

Bilinear interpolation 0.905645 0.991354 0.940814 0.973788 0.977980 

Cubic convolution interpolation 0.918702 0.992803 0.954027 0.975561 0.982747 

Proposed algorithm 0.921496 0.993167 0.963795 0.976768 0.986024 

Table 4. Comparison of the correlation value of our method and general methods in several 
images

5. Conclusions 

In image processing, the interpolated magnification method brings about the problem of 
image loss such as the blocking and blurring phenomenon when the image is enlarged. In 
this paper, we proposed the magnification method considering the properties of human 
visual processing to solve such problems. As a result, our method is faster than any other 
algorithm that is capable of removing the blocking and blurring phenomenon when the 
image is enlarged. The cubic convolution interpolation in image processing can obtain a 
high-resolution image when the image is enlarged. But the processing is too slow as it uses 
the average of 16 neighbor pixels. The proposed algorithm is better than the cubic 
convolution interpolation in the processing time and performance. In the future, to reduce 
the error ratio, we will enhance the normalization filter which has reduced the blurring 
phenomenon because the Gaussian filter is a low pass one. 
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Methods of the Definition Analysis
of Fine Details of Images

S.V. Sai 
Pacific national university 

Russia

1. Introduction  

Definition is one of the most important parameters of the color image quality and is 
determined by the resolution of channel brightness and chromaticity. System resolution is 
traditionally determined by a number of the television lines, calculated on the maximal 
spatial frequency value at which threshold contrast of the reproduced image is provided. 
Traditional methods of definition analysis are developed for standard analog color TV 
systems. Specific kind of distortions in digital vision systems is associated with the 
restrictions imposed by a particular compression algorithm, used for handling static and 
dynamic images.
Such distortions may lead to an inconsistency between a subjective estimate of the decoded 
image quality and the program estimate based on the standard calculation methods. 
Till now, the most reliable way of image quality estimation is the method of subjective 
estimation which allows estimating serviceability of a vision system on the basis of visual 
perception of the decoded image. Procedures of subjective estimation demand great amount 
of tests and a lot of time. In practice, this method is quite laborious and restricts making 
control, tuning and optimization of the codec parameters.  
The most frequently used root-mean-square criterion (RMS) for the analysis of static image 
quality does not always correspond to the subjective estimation of fine details definition, 
since a human vision system processes an image on local characteristic features, rather than 
averaging it elementwise. In particular, RMS criterion can give "good" quality estimations in 
vision systems even at disappearance of fine details in low contrast image after a digital 
compression. 
A number of leading firms suggest hardware and software for the objective analysis of 
dynamic image quality of MPEG standard (Glasman, 2004). For example Tektronix PQA 300 
analyzer; Snell & Wilcox Mosalina software; Pixelmetrix DVStation device. Principles of 
image quality estimation in these devices are various. 
For example, PQA 300 analyzer measures image quality on algorithm of “Just Noticeable 
Difference – JND”, developed by Sarnoff Corporation. PQA 300 analyzer carries out a series 
of measurements for each test sequence of images and forms common PQR estimation on 
the basis of JND measurements which is close to subjective estimations. 
To make objective analysis of image quality Snell & Wilcox firm offers a PAR method – 
Picture Appraisal Rating. PAR technology systems control artifacts created by compression 
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under MPEG-2 standard. The Pixelmetrix analyzer estimates a series of images and 
determines definition and visibility errors of block structure and PSNR in brightness and 
chromaticity signals.   
The review of objective methods of measurements shows that high contrast images are 
usually used in test tables, while distortions of fine details with low contrast, which are most 
common after a digital compression, are not taken into account. 
Thus, nowadays there is no uniform and reliable technology of definition estimation of 
image fine details in digital vision systems. 
In this chapter new methods of the definition analysis of image fine details are offered. 
Mathematical models and criteria of definition estimation in three-dimensional color space 
are given. The description of test tables for static and dynamic images is submitted. The 
influence of noise on the results of estimations is investigated. The investigation results and 
recommendations on high definition adjustment in vision systems using JPEG, JPEG-2000 
and MPEG-4 algorithms are given.  

2. Image Definition Estimation Criteria in Three-Dimensional Color Space  

The main difficulty in the objective criterion development is in the fact that threshold vision 
contrast is represented as a function of many parameters (Pratt, 2001). In particular, while 
analyzing the determined image definition, threshold contrast of fine details distinctive with 
an eye is represented as a function of the following parameters: 

),C,C,t,(FK both σα=

where α is the object angular size, t is the object presentation time, oC  is the object color 
coordinates; bC  is the background color coordinates, σ  is the root-mean-square value of 
noise. 
Solving the task it was necessary first to find such metric space where single changes of 
signals would correspond to thresholds of visual recognition throughout the whole color 
space, both for static, and for dynamic fine details.   
One of the most widespread ways of color difference estimation of large details of static 
images is transformation of RGB space in equal contrast space where the area of dispersion 
of color coordinates transforms from ellipsoid to sphere with the fixed radius for the whole 
color space (Krivosheev & Kustarev, 1990).  
In this case the threshold size is equal to minimum perceptible color difference (MPCD) and 
keeps constant value independently of the object color coordinates. 
The color error in equal color space, for example, in ICI 1964 system (Wyszecki, 1975) is 
determined by the size of a radius - vector in coordinates system and is estimated by the 
number of MPCD 
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where *
o

*
o

*
o V,U,W  is the color coordinates of a large object in a test image and   *

o
*
o

*
o V~,U~,W~  is 

the color coordinates in a decoded image; 1725 31 −= /* YW  is the brightness index; 

)uu(WU o
** −=13  and )vv(WV o

** −=13  is the chromaticity indexes;  u and v is the 
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chromaticity coordinates in D. Mac-Adam diagram (Mac Adam, 1974); ou = 0,201 and ov  = 
0,307 is the chromaticity coordinates of basic white color. 
When comparing color fields located in "window" on a neutral background one can notice, 
that color differences (1) are invisible at 32...≤ε (MPCD) for the whole color space which is 
explained by the properties of equal color spaces (Novakovsky, 1988). 
Color difference thresholds will increase with the reduction of objects sizes and will depend 
on the observable color. That is explained by the properties of visual perception. That‘s why 
equal color spaces practically are not used for the analysis of color transfer distortions of fine 
details since the property of equal spaces is lost. 
As a result of the researches, the author (Sai, 2002) offers and realizes a method of updating 
(normalization) of equal space systems which are aimed to be used both for the analysis of 
large details distortions and for estimation of transfer accuracy of fine color details. Equal 
color space normalization consists in the following. 
Determine color difference between two details of the image in size of a radius – vector 

2
21

2
21

2
213 )UU()VV()WW(E ****** −+−+−=Δ ,  (2) 

where *** VUW 111 is the color coordinates of the 1-st object; *** VUW 222 is the color coordinates of 
the 2-nd object. 
As against (1), equation (2) determines color difference between objects of one image, 
instead of between objects of images "before" and "after" digital processing. 
If one of the objects is background, color contrast “object – background” is determined as 
follows: 

2223 )UU()VV()WW(E *
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*
o −+−+−=Δ   (3) 

or in difference coordinates: 

2*2*2* )V()U()W(E ΔΔΔΔ ++= ,  (4) 

where )WW(W *
b

*
o

* −= 3Δ , )UU(U *
b

** −= 3Δ , )VV(V *
b

** −= 3Δ  is the difference values 

(MPCD) according to brightness and chromaticity indexes; *
o

*
o

*
o VUW is the object color 

coordinates; *
b

*
b

*
b VUW  is the background color coordinates. 

Assume, that the large detail of the image is recognized with an eye under the following 
condition: 

thEE ΔΔ ≥ ,  (5) 

where thEΔ  = 2…3 (MPCD) is the threshold contrast which keeps constant value within the 
limits of the whole color space. 
Further, we shall substitute (4) in (5) and convert to the following: 
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The contrast sensitivity of human vision is reduced with the reduction of details sizes and 

threshold value ( thEΔ ) becomes dependent on the object size (α ), both in brightness, and 
chromaticity. Thus the criterion of fine details difference is defined as 
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Δ
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Δ
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where *
thWΔ , *

thUΔ  and *
thVΔ  is the threshold values according to brightness and 

chromaticity indexes which usually depend on color background coordinates, time of object 
presentation and noise level. 
Write (7) in the following way: 

1222 ≥++ )V()U()W( *** ΔΔΔ   (8) 

where *
th

** W/WW ΔΔΔ = , *
th

** U/UU ΔΔΔ =  and *
th

** V/VV ΔΔΔ =  is the normalized 
values of object – background contrast. Provided condition (8) is true, color difference 
between object and background is visible with an eye, hence fine details are perceptible. 
Thus, transition from equal space into normalized equal space allows on the basis of 
criterion (8) to estimate objectively color difference of both large and fine details under 
preset conditions of color image supervision. 
In vision systems where the receiver of the decoded images is the automatic device, and 
vision properties are not taken into account, the criterion of fine details difference can be 
received directly in three-dimensional space of RGB signals: 

th
222 KB)(G)(R)( ΔΔΔΔ ≥++ ,

where thKΔ  is the threshold contrast value, which depends on device sensitivity and  noise 
level at an output of a system. 
In order to use criterion (8) in practice it is necessary to determine numerical values of fine 
details threshold contrast at which they are visible with an eye, depending on the size of 
details for the set of supervision conditions. 
To solve this task it was required:  
1. To develop a synthesis algorithm of the test image consisting of small static and dynamic 
objects with regulated contrast in MPCD values. 2. To develop a procedure of the 
experiment and on the basis of subjective estimations to determine threshold values of fine 
details contrast.   

3. Test Image Synthesis 

The author has developed a test image algorithm synthesis in equal color space, that allows 
to set initial contrast of object - background directly in color thresholds, that is basically 
different  from the known ways of synthesis when the image contrast is set by the 
percentage of object brightness to background brightness. 
The synthesis algorithm consists in the following. 
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At the first stage form, sizes, spatial position and color coordinates ( *** VUW ) of objects and 
background for the basic first frame of test sequence are set. The vectors of movement are 
set for the subsequent frames. 
At the second stage the transformation }BGR{}VUW{ j,i,mj,i,mj,i,m

*
j,i,m

*
j,i,m

*
j,i,m →  which is 

necessary for visualization of the initial sequence on the screen and for submission of digital 
RGB signals on the input of the system under research is carried out for each frame of test 
sequence on the basis of mathematical model which have been developed.  Where m is the 
frame number; i and j is the pixels numbers in columns and lines of image.  
At the third stage, cyclic regeneration of the M frames with the set frequency ( framef ) is 
carried out. When reproducing the test sequence, dynamic objects move on the set trajectory 
to the number of pixels having been determined by the motion vector. 
On the basis of the above described algorithm the test table and video sequences are 
developed into which all the necessary elements for the quality analysis of fine details of 
static and dynamic images are included. 
Let's consider the basic characteristics of the test table which is developed for the quality 
analysis of static images. 
The table represents the image of CIF format (360×288), which is broken into 6 identical 
fragments (120×144). Each fragment of the table contains the following objects: a) horizontal, 
vertical and inclined lines with the stripes width of 1, 2, 3 or more 3 pixels; b) single small 
details of rectangular form. Objects of the image are located on a grey unpainted 
background. 

a) b) 
Figure 1. A fragments of the test  image: a) 1-st variant; a) 2-nd variant  

The object - background brightness *WΔ  contrast  is set by MPCD number for the 1-st and 
the 2-nd fragments     

)WW(W *
b

*
o

* −±= 3Δ ,  at 0=*UΔ  and 0=*VΔ .

The object - background chromaticity *UΔ  contrast  is set by MPCD number for the 3-rd 
and the 4-th fragments     

)UU(U *
b

*
o

* −±= 3Δ ,  at 0=*WΔ  and 0=*VΔ .

The object - background chromaticity *VΔ  contrast  is set by MPCD number for the 5-th 
and the 6-th fragments     
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)VV(V *
b

*
o

* −±= 3Δ ,  at 0=*WΔ  and 0=*UΔ .

As an example, fragments (120×144) of the test image on brightness for two variants of 
tables are shown on Figure 1.  
Three types of test video sequences with formats 360×288, 720×576 and 1440×1152 pixels are 
developed for the quality analysis of dynamic images. 
The table with a format 360×288 is used as the basis (I-frame) of test video sequence. The 
sequence consists of 12 frames cyclically repeated at a certain frequency framef  = 30 Hz. 
Spatial coordinates of the m - frame objects are displaced relatively the frame number m-1 on 
the value of motion vector. During the sequence regeneration all the details of the image of 
the test table become dynamic. 
In test sequence with a format 720×576 every frame consists of 4 fragments of a format 
360×288. And, at last, for sequence of a format 1440×1152 every frame contains 4 fragments 
of a format 720×576.

4. Experimental Estimation of Visual Thresholds

The test table and sequence with format 352×288 are synthesized to determine the threshold 
of visual perception of the image fine details.     
The developed user program interface allows adjusting the following image parameters: 
background brightness, object contrast on brightness and chromaticity indexes. 
Threshold values of contrast for static details on brightness and chromaticity indexes were 
received experimentally with the help of subjective estimations with the following 
technique. 
1. The test image with adjustable values of color contrast on axis *WΔ  with step 1 MPCD 

and on axes *UΔ  and *VΔ U with step 2 MPCD was offered to the observer.  
2. During the experiment the observer changed the contrast value beginning with the 

minimal until the stripes became distinct. 
3. As an estimation criterion of threshold contrast the following condition was set: the 

stripes should be distinguishable with an eye in comparison with the previous image 
i.e. at which contrast was one step lower. 

4. Under condition (3) the observer fixed value of contrast at which, in his opinion, 
sufficient "perceptibility" of lines was provided. 

Students and employees of Khabarovsk state technical university (Pacific National 
University) participated in the experiments. 

δ >3 3 2 1 
*
thWΔ 2 3 4 6 

*
thUΔ 26 34 48 72 

*
thVΔ 24 36 52 76 

Table 1.  Dependences of threshold contrast from the size of objects 
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Table 1. shows subjective average estimations of threshold contrast from the size ( δ  ) of 
objects for background brightness is *

bW  = 80 MPCD, arithmetic-mean value being received 
by estimation results of 20 observers. 
In the table the size of objects is set by pixels number, and the threshold value by the MPCD 
number. For example, at the minimal sizes of lines ( δ =1) the average value of a visual 
threshold on brightness index is equal to 6 MPCD and on chromaticity index it is equal to 72 
and 76 MPCD. 
For example, at the minimal sizes of stripes the average value of a visual threshold on 
brightness index is equal to 6 MPCD and on chromaticity index it is equal to 72 and 76 
MPCD.
The results of the experiments show, that values of threshold contrast on an unpainted 
background on axes *UΔ  and *VΔ  are approximately identical, and exceed values of 
thresholds on axis *WΔ  in 10 … 13 times. Change of background brightness from 70 up to 
90 MPCD does not essentially influence the thresholds of fine details visual perception. 
Experimental estimations of color thresholds in *** vuL  system show, that estimations on 
coordinates of chromaticity *u  and *v  1.5 … 1.8 times differ. Therefore the use of *** VUW
system is more preferable. 
The values of threshold contrast for mobile details of test sequence are received by 
experimentally with the help of subjective estimations by the following technique. 
During the experiment the observer changed of contrast value, beginning with the minimal 
until the mobile objects became distinct.  
The results of the experiments show that, at movement of objects, contrast threshold values 
in comparison with the data of Table 1, increase, depending on t according to function 

)1/(1)( /ϑtetf −−= , where ϑ  = 0,05 is the time of vision inertia;  t is the time interval, during 
which the object moves on a certain number of pixels set by the vector. 
In particular, at t = 0,033 ( framef  = 30 Hz) values of contrast threshold of fine details have 
increased approximately in 1,8 … 2 times.  
Thus, the received experimental data allow using criterion (8) in practice as an objective 
estimation of transfer accuracy of both static and dynamic fine details of the test image. 

5. Analysis of Definition and Distortions of Test Table Fine Details

The analysis of definition and distortions of test table fine details consists of the following 
stages. 
At the first stage, the test sequence of 12 image frames in RGB signal space, where *** VUW
space is used as initial object color coordinates, is synthesized. 
Contrast of stripes image and fine details two - three times exceeds the threshold values. 
Such choice of contrast is caused by the fact that in the majority of cases fine details with low 
contrast are more distorted during digital coding and images transfer. 
At the second stage, digital RGB signals of test sequence move on an input of the test system 
and are processed using coding algorithm. 
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At the third stage after decoding, the test sequence is restored and jimjimjim BGR ,,,,,,
~

,
~

,
~

signals are transformed into *
,,

*
,,

*
,,

~
,

~
,

~
jimjimjim VUW  signals for each frame. All 12 frames of the 

restored sequence write in a RAM of the analyzer.    
At the fourth stage, contrast and distortions of fine details are measured by the local 
fragments of the restored image, and definition estimation is obtained by the objective 
criteria.
Let's consider a measurement method of stripes contrast of the first image frame. 
For an estimation of definition impairment it is necessary to measure contrast for each 
fragment of the decoded image of stripes with the fixed size and to compare the received 
value to threshold value. We assume that stripes are distinguished by the observer, if the 
condition is satisfied: 
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where )k,(E~ δΔ  is the average normalized value of stripes contrast, average on the k

"window" area of the image; *W~Δ , *U~Δ and *V~Δ is the average values of contrast on 
brightness and chromaticity indexes; k ⎯ the parameter determining the type the "window" 
under  analysis (k = 0 - vertical stripes, k = 1 - horizontal, k = 2 - sloping); )(W*

th δΔ , )(U*
th δΔ

and )(V*
th δΔ is the contrast threshold values from Table 1. 

Since the test image is divided into fragments on brightness and chromaticity indexes, the 
criteria of distinction of stripes on each coordinate are determined as follows: 
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where making calculations the minimal value of contrast from the three (k) "windows" 
under analysis is chosen on each color coordinate, which allows taking into account the 
influence of spatial orientation of lines for decoding accuracy. 

Figure 2. Image fragment "windows" under analysis 
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Figure 2 shows  the example of spatial position of the image fragment "windows" under 
analysis  on the  brightness index with contrast *

thWΔ  = 18 MPCD which is three times 
higher than the threshold value for the finest details ( δ  = 1). 
Average contrast values on brightness and chromaticity indexes are equal to the initial 
values if there are no distortions.  In this case, contrast of all the "windows" of the test image 
under analysis three times exceeds threshold values and, hence, definition does not become 
worse.
Average contrast value of the "windows" of the test image under analysis decreases, if there 
are distortions. But, if the contrast on brightness or chromaticity index becomes less than 
threshold value, i.e. conditions (10) are not satisfied, the conclusion is made that the 
observer does not distinguish fine details.  
Finally, minimal size of stripes with the contrast which satisfies criteria (10) makes it 
possible to determine maximum number of distinct elements of the image that constitutes 
the image definition estimation on brightness and chromaticity.  
It is obvious, that the estimation by criteria (10) depends on the initial image contrast.  
In particular the stripes contrast decrease on 1 … 2 thresholds gives "bad" results when 
using test image with low contrast. But when the initial contrast exceeds threshold values 10 
times, definition impairment is not observed in such contrast decrease.  
Thus, the criterion (8) gives an objective estimation of definition impairment of fine details 
of low contrast image. 
To exclude initial contrast influence on indeterminacy of estimations, we should take the 
following equation for brightness index: 
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where )(*W δε  is the threshold- normalized deviation of contrast from the initial value; 

*WQ  is the quality parameter  determining admissible values of contrast decrease on  
brightness index; N is the pixels number in the  “window” under analysis. 
Calculations on chromaticity are made on analogy. 
Calculations having been made, the program analyzer compares the results received with 
the quality rating in a ten-point scale and establishes estimation. 
It is shown in (Sai, 2003) that high-quality reproduction of fine details with the rating not 
less than 6 … 7 points, is obtained under the following conditions: a) contrast reduction of 
stripes on brightness should be not more than 50 % of the threshold values for the stripes 
width of 1 pixel or more; b) contrast reduction of stripes on chromaticity should be not more 
than 75 % of the threshold values for the stripes width of 3 pixels or more, i.e. 

<≥ )(*W 1δε 0,5; <≥ )(** V,U 3δε 0,75  (12) 

The experimental results of the images quality analysis in different compression systems 
show that, when these criteria are met, the reduction of the visual sharpness of fine details is 
only barely visible or almost imperceptible. 
The developed method differs from the known in the fact that contrast of fine details at the 
exit of a system is estimated by the threshold- normalized average value of the “window” 
area of the stripes image under analysis, but not by the amplitude value of the first 
harmonic of brightness and chromaticity signals. 
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Object - background initial contrast is also set not by the maximal value, but in two - three 
times exceeding threshold value that allows to estimate the effectiveness of coding system in 
up to threshold area where distortions are the most essential. 
Thus, the offered method allows estimating objectively the reduction of the visual sharpness 
since it takes into account thresholds of visual perception of fine details and possible 
fluctuations of color coordinates caused by linear distortions of signals and noise presence 
in digital system. 
In image coding digital systems using nonlinear transformations not only linear reduction of 
high-frequency component of decoded RGB signals is possible, but also nonlinear 
distortions may occur. 
Therefore, in some cases, the estimation of contrast reduction by criteria (12) can lead to 
incorrect results. 
To take into account the influence of nonlinear distortions on objectivity of estimations the 
following decision is offered. 
In addition to estimations (12), the normalized average deviation of reproduced color 
coordinates relative to the initial ones in the image “window”, for example, on brightness is 
offered to estimate:  
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It is shown in (Sai, 2003) that in order to provide high-quality reproduction of fine details 
with the rating not less than 6 … 7 points, it is necessary to satisfy the following conditions 
in addition to criteria (12): a) the root-mean-square deviation of brightness coordinates in all 
"windows" under analysis must be not more than 30 %; b) the root-mean-square deviation of 
chromaticity coordinates not more than 50 % for the details not less than three pixels in size. 

<≥ )(*W 1δΔ  0,3;   <≥ )(** V,U 3δΔ 0,5  (14) 

Consider the method of distortions estimation of fine single details of a rectangular form. 
For the test image fragment, for example on brightness, find the normalized average 
deviation of object contrast and initial value on the object area: 
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As against (11), number N is determined by the image “window” with a single object being 
included into it. For example, at the analysis of distortions of point object the “window” size 
is 1×1 pixels. At the analysis of distortions of object 2×2 pixels in size, the “window” size is 
2×2, etc. 
It is obvious from the experiments, that in order to ensure high-quality reproduction of fine 
details with the rating not less than 6 … 7 points, it is necessary to satisfy the following 
conditions: a) the root-mean-square deviation on brightness must be not more than 1,5 for 
all the details; b) the root-mean-square deviation on chromaticity must be not more than 0,8 
for the details 3 or more pixels in size. 

<≥ )(*W 1δη 1,0; <≥ )(** V,U 3δη 0,5  (16) 
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Thus a program analyzer can estimate visual quality of reproduction of striped lines and 
fine details of the test image by criteria (12), (14) and (16). 
Table 1 shows the experimental dependence of parameters (11), (13) and (15) from quality 
rating.
Results are received after JPEG compression of the image in Adobe Photoshop 5 using ten-
point scale of quality. The results are received for the test image with fine details contrast 
exceeding threshold values two times. Thus according to Table 1., it is possible to estimate 
the quality rating for each of the six parameters. 
The average quality rating of each frame of the test sequence is calculated as follows: 
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1 2 3 4 5 6 7 8 9 10 Q
Low Medium High Maximum 

*Wε 1,006 0,966 0,948 0,690 0,498 0,225 0,099 0,071 0,012 0,013 
*WΔ 0,690 0,700 0,686 0,627 0,519 0,338 0,240 0,145 0,083 0,015 
*Wη 2,039 2,039 1,722 1,617 1,512 1,409 0,998 0,295 0,097 0,001 

δ =1

*Uε 1,528 1,617 1,569 1,073 0,772 0,557 0,391 0,241 0,009 0,002 
*UΔ 0,960 0,955 0,917 0,688 0,505 0,432 0,331 0,238 0,143 0,053 
*Uη 1,124 1,070 1,024 1,143 0,456 0,460 0,477 0,299 0,124 0,047 

δ =3

Table 1. The experimental dependence of parameters from quality rating 

Consider a measurement technique for mobile objects of the test sequence. 
For an estimation of definition it is necessary to calculate average values of contrast 
deviation of stripes on brightness and chromaticity for every m of the frame of test sequence 
and to estimate average value for the set of 12 frames: 
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where M = 12 is the frames number; )t(f is the function taking into account recession of 
contrast - sensitive vision characteristic depending on objects presentation time. 
Reduction of stripes contrast on chromaticity is calculated similarly. 
Calculations (17) having been made, conditions (12) are checked. 
If (14) is satisfied on brightness and chromaticity, the decision is made, that the observer 
distinguishes fine mobile details and definition reduction is slightly visible.  
For the estimation of parameters (13) and (15) average values on 12 frames of test sequence 
are calculated on analogy to the equation (17).  
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6. Noise Influence Analysis 

The developed criteria of image quality estimation are received without taking into account 
noise in RGB signals. Hence the correctness of the results is true in the case when noise level 
in the received image is small enough. 
The analysis of noise influence in a digital video system can be divided into two parts: 
analysis in up to threshold area and analysis in higher of threshold area. 
In the up to threshold area the transfer quality of coded video data is high, and noise 
presence in the system results only in small fluctuations of RGB signals. 
But, if the noise level and probability of mistakes exceed the threshold value, abrupt image 
quality impairment is observed because of possible changes of pixels spatial position and 
distortions of signal peak values. 
In order to analysis noise influence on the image definition reduction in the up to threshold 
area take advantage of the following assumptions: 
1. Interaction of signals and noise is additive. 
2. Density distribution law of stationary noise probabilities is close to the normal law. 
3. Noise in RGB signals of the decoded image is not correlative. 
Noise in the system results in "diffusion" of both objects color coordinates and background 
in the decoded image. Thus a point in RGB space is transformed into ellipsoid with semi 
axis. Their values are proportional to root-mean-square noise levels.  
Calculating the stripes contrast, make the following transformation: 
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Hence, values of equal coordinates become random variables with root-mean-square 
deviations: *** VUW ,, σσσ .

Dispersions of *W , *U  and *V  coordinates are received with the help of a linearization 
method (Ventzel & Ovtharov, 2000) of the functions 17Y25W 1/3* −= , )uu(WU **

013 −=

and )vv(WV **
013 −= .

Define dispersion of brightness index 17Y25W 1/3* −= . Linearization of the functions 
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where, the brightness coordinate is determined by linear transformation: 
BGR L,L,L,Y 114058702990 ++= .

Therefore
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Define dispersion of chromaticity index *U  with the help of a linearization method of the 
function )uu(WU **

013 −=
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where derivatives are found in the following way:  
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where WVUT ++= ; T/Uu = ; T/Vv = ;
BaGaRaU 321 ++= ; BaGaRaV 654 ++= ; BaGaRaW 987 ++= ;

91 a...a  is the constants, and 7411 aaab ++= ; 8522 aaab ++= ; 9633 aaab ++= .

Dispersion of chromaticity index *V  is calculated similarly. 
Estimate of noise influence on visual sharpness reduction of the test image (Figure 1).  
As, the test image is divided into fragments on indexes of brightness and chromaticity, root-
mean-square deviations of difference color coordinate for each fragment can be estimated of 
the following expressions:    
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Define criterion at which the observer distinguishes image stripes with noise.    
The known « three sigma » rule is used to solve the task. This rule means that deviation 
probability of a random variable X from its mean value not less than three sigma, provided 
the law of distribution is close to normal, does not exceed 1/9. 
Criteria, at which the observer distinguishes stripes in the test image with noise on 
brightness, are found in the following way: 
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where )(δϕ  is the weight function. 
Criteria of chromaticity indexes *U  and *V  is calculated similarly. 
Introduction of weight function into (18) is caused by the fact that vision contrast sensitivity 
decreases with the reduction of the details sizes and hence the influence of noise on their 
perceptibility is greater. 
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Experimental research results have shown that the maximal value of weight function 
( )(δϕ =1) corresponds to the minimal size ( 1=δ ) of stripes, and weight function values 
decrease with the increase of the stripes size. This is proportional to the reduction of 
threshold values (Table 1). 
The numerical solution of the developed mathematical model allows estimating the 
influence of additive noise on definition reduction depending on root-mean-square values 
of noise in RGB signals on the system output. 
Dependences of root-mean-square deviations of color coordinates on brightness and 
chromaticity from ( BGR σσσσ ≈≈≈ ) are shown in Table 2, provided that noise levels in R,
G and B signals are approximately identical. 
Value (σ ) is given in percentage ratio to maximal amplitude of R, G and B signals. 
Objects color coordinates of the test image with the contrast equal to threshold value for the 
details with the minimal sizes are used in calculations, i.e., *

bW = 80 MPCD, *WΔ = 6 MPCD, 
*UΔ = 72 MPCD and *VΔ = 76 MPCD. 

σ % 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
*Wσ 0.31 0.61 0.92 1.22 1.53 1.84 2.14 2.45 2.76 3.06 
*Uσ 1.20 2.40 3.60 4.81 6.01 7.19 8.43 9.61 10.8 12.1 
*Vσ 2.10 4.20 6.30 8.41 10.5 12.6 14.8 16.8 18.9 21.0 

Table 2. Dependences of root-mean-square deviations of  *W , *U  and *V color coordinates 

The results received allow to estimate the influence of noise in RGB signals on system 
output on threshold contrast increase (18) and, hence, on impairment of visual sharpness. 
For example, to make finest details of the image distinguished by the observer at a relative 
noise level in RGB signals is %BGR 2==≈≈ σσσσ  (Ψ = 34 dB) their contrast should be 
increased on 9 MPCD in brightness and on 36 MPCD and 63 MPCD in chromaticity. 
Selective average dispersion values on indexes of brightness and chromaticity are used for 
the proof of a correctness of the developed mathematical model. 
For example, for an brightness index  
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where, *W  is the selective average value of *W coordinate in a window with size 
NN × pixels.  Comparison calculated both experimental data proves a correctness of the 

developed mathematical model of noise transformation. Insignificant deviations into 
comparison results do not exceed 3 … 5 % and explained of a linearization method errors. 

7. Practical Results 

The developed methods are used in practice for the analysis and adjustment of video 
systems parameters, to get high quality transfer and reproduction of images fine details.  
The results of the analysis are given below and the recommendations on adjustment for high 
definition in vision systems using JPEG, JPEG-2000 and MPEG-4 algorithms are offered. 
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The experimental analysis of coding quality of static images is carried out by the following 
technique. 
At the first stage the influence of the coder parameters on the decoded image quality of the 
test table is analyzed with the help of a computer analyzer. 
The computer analyzer calculated the following dependences of image quality parameters 
on the coder adjustment parameters: a) reduction of stripes contrast (11) on brightness and 
chromaticity; b) average deviation (13) of stripes color coordinates; c) average deviation (15) 
of a single object contrast. 
At the second stage the coder parameter at which the results of the analysis correspond to 
high quality rating of ( ≥Q 6 … 7) is selected. 
At the third stage, the efficiency of digital compression of test images is estimated. Original 
test photo images containing 50 … 70 percent of thin structural elements were used at the 
experiment.
Quality analysis of JPEG and JPEG2000 images 
The results of quality analysis of JPEG and JPEG2000 images coded in Adobe Photoshop CS 
are given below. In Table 3 one can see reproduction quality parameters of stripes and fine 
details of the test image on brightness for low, average and high rating quality.  
In column (Var) values of adjustment parameters of images quality, being used in Adobe 
Photoshop CS are shown.  
Fragments of the test image with various quality rating are shown on Figure 3. 

JPEG *Wε *WΔ *Wη Var JPEG2000 *Wε *WΔ *Wη Var

Q = 2 0,97 0,70 2,04 4 Q = 2 1,09 0,69 1,72 25
Q = 4 0,69 0,63 1,62 7 Q = 4 0,93 0,57 1,62 30
Q = 7 0,10 0,24 0,99 9 Q = 7 0,19 0,13 0,31 65

Table 3. Quality parameters JPEG and JPEG2000 

The analysis of the results received shows that such adjustment parameters as: Var ≥ 9 at 
JPEG compression and Var ≥ 65 at JPEG2000 compression are to be established for 
providing high images definition in Adobe Photoshop CS. 
The quality analysis of JPEG and JPEG2000 images coded in ACD See 8 is done in the 
similar way. The analysis of the results received shows that such adjustment parameters as: 
Var ≥ 80 at JPEG compression and Var = Compression ratio ≤ 30 at JPEG2000 compression 
are to be established for providing high images definition in ACD See 8. 

Adobe Photoshop CS ACD See 8 
JPEG (9) JPEG2000 (65) JPEG (80) JPEG2000 (30) 

Cf 6,4 3,1 12 27 Lena 
Cf 8,5 7,0 13 30 Barbara 

Table 4. Test images compression factors 

As an example of compression efficiency of test images of Lena and Barbara at the 
established parameters of JPEG and JPEG2000 codecs on high definition are shown in table 
4, where Cf is the  compression factor. The initial format of test images is equal 512×512×3
Bytes. 
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JPEG JPEG2000

Q = 7 

Q = 4 

Q = 2 

Figure 3. Fragments of the test image on brightness 

The analysis of the received results allows making the following conclusion. 
The JPEG and JPEG2000 odecs in ACDSee 8 provide higher compression factor of photo 
images in comparison with codecs of Adobe Photoshop CS at the established high quality 
reproduction of fine details.  
Quality analysis of MPEG-4 video images 
The experimental analysis of coding quality of dynamic images was carried out by the 
following technique (Sai, 2006). 
At the first stage, test sequence of 12 frames (360×288) was transformed by means of Adobe 
Premiere 6.0 into a video clip without compression of video data with *.avi expansion.  
At the second stage, the test video clip was compressed by the MPEG-4 Video compressor 
with the tuning dial ranging from 1 up to 100 % for quality adjustment of video clips.    
At the third stage, each frame of the compressed video clip was transformed into 
format and passed into the program analyzer.  
At the fourth stage, the quality of the decoded frames sequence was rated.  
Figure 4 shows test sequence fragments on brightness (contrast is increased) for 1 and 6 
frames, MPEG-4 Video algorithm for parameters Var = 90 %, Var = 70 % and Var = 50 % 
having been executed. 
Table 5 shows numerical results of quality rating estimation of the decoded sequence. 
Compression factors in relation to volume of the video data of the initial test sequence (14,2 
Mb) are also shown here.  
Figure 5 shows fragments of the video clip frame with the real image after compression in 
MPEG-4 Video with high and low quality rating.   
Visual comparison of images speaks to the fact that distortions of fine details (thin lines on 
the sweater) with low contrasts are practically imperceptible for vision at high quality 
rating. Low quality rating compression results in disappearance of low contrasts fine details 
from the image 
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Var = 90 % Var = 70 % Var = 50 % 
Figure 4. Test sequence fragments on brightness  

Q = High Q = Low
Figure 5. Fragments of the video clip frame 

.Var 90% 70% 50% 
Rating High Medium Low 

Q 6,8 4,3 2,7 
Cf 29,6 62,6 123,5 

Table 5. Quality rating MPEG-4 

The received results lead to a conclusion that the adjustment scale should be established not 
less than 90 % when using MPEG-4 Video with high reproduction quality of images fine 
details. 



Vision Systems: Applications 296

Other types of MPEG-4 compressor are also investigated in this work.  
In particular, it follows from the experimental results that the quality rating of the test 
sequence is 3,6 points for the DivX (Fast – Motion) compressor and 4,2 points for the DivX 
(Low – Motion).   Thus, the use of these compressors results in average rating and does not 
allow receiving objectively high reproduction quality of video images fine details. 

8. Conclusion 

The developed objective methods of the definition analysis of images fine details practically 
prove to be effective and can be used for adjustment and optimization of codec parameters 
on high visual sharpness in various vision systems.   
The main distinctive features of the developed methods should be noted in the summary.  
1. The visual sharpness analysis is suggested to be carried out on the test image with low 

contrast, the initial contrast of fine details being set by a number of minimal color vision 
thresholds two - three times exceeding the average thresholds values.    

2. Reduction in visual sharpness is suggested to be estimated by the normalized to vision 
thresholds, average value of test image fine details contrast deviation from the initial 
values of contrast in three-dimensional equal color space. 

3. Image noise is suggested to be estimated by the root-mean-square values of color *W ,
*U  and *V  coordinates deviations which are calculated by the quantity of minimal 

color vision thresholds.
To provide high quality reproduction of images fine details is the task of paramount 
importance at designing vision systems of various applications.      
The author hopes that the methods offered in this work will help designers of vision 
systems to solve this task more effectively.  
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1. Introduction  

An omnidirectional camera is a vision system providing a 360° panoramic view of the scene. 
Such an enhanced field of view can be achieved by either using catadioptric systems, which 
opportunely combine mirrors and conventional cameras, or employing purely dioptric fish-
eye lenses. Omnidirectional cameras can be classified into two classes, central and non-
central, depending on whether they satisfy the single effective viewpoint property or not 
(Baker & Nayar, 1998). As noted in (Svoboda & T. Pajdla, 1997), it is highly desirable that 
such imaging systems have a single effective viewpoint. When this property is verified, 
there exists a single center of projection, that is, every pixel in the sensed images measures 
the irradiance of the light passing through the same viewpoint in one particular direction. 
The reason a single viewpoint is so desirable is that it allows the user to generate 
geometrically correct perspective images from the pictures captured by an omnidirectional 
camera. Moreover, it allows applying the known theory of epipolar geometry, which easily 
allows the user to perform ego-motion estimation and structure from motion from image 
correspondences only.  
As shown in (Baker & Nayar, 1998), central catadioptric systems can be built by combining 
an orthographic camera with a parabolic mirror, or a perspective camera with a hyperbolic 
or elliptical mirror. Conversely, panoramic cameras using fish-eye lenses cannot in general 
be considered central systems, but the single viewpoint property holds approximately true 
for some camera models (Micusik & Pajdla, 2003). 
In this chapter, we focus on calibration of central omnidirectional cameras, both dioptric and 
catadioptric. After outlining previous works on omnidirectional camera calibration, we 
describe our novel procedure and provide a practical Matlab Toolbox, which allows any 
inexpert user to easily calibrate his own camera. 
Accurate calibration of a vision system is necessary for any computer vision task requiring 
extracting metric information of the environment from 2D images, like in ego-motion 
estimation and structure from motion. While a number of calibration methods has been 
developed for standard perspective cameras (Zhang, 2000), little work on omnidirectional 
cameras has been done. The first part of this chapter will present a short overview about 
previous methods for calibration of omnidirectional cameras. In particular, their limitations 
will be pointed out. The second part of this chapter will present our calibration technique 
whose performance is evaluated through calibration experiments. Then, we will present our 
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Matlab toolbox (that is freely available on-line), which implements the proposed calibration 
procedure. We will also describe features and use of our toolbox. 

2. Related Work 

Previous works on omnidirectional camera calibration can be classified into two different 
categories. The first one includes methods which exploit prior knowledge about the scene, 
such as the presence of calibration patterns (Cauchois et al., 2000; Bakstein & Pajdla, 2002) or 
plumb lines (Geyer & Daniilidis, 2002). The second group covers techniques that do not use 
this knowledge. The latter includes calibration methods from pure rotation or planar motion 
of the camera (Gluckman & Nayar, 1998), and self-calibration procedures, which are 
performed from point correspondences and epipolar constraint through minimizing an 
objective function (Kang, 2000; Micusik & Pajdla, 2003). 
All mentioned techniques allow obtaining accurate calibration results, but primarily focus 
on particular sensor types (e.g. hyperbolic and parabolic mirrors or fish-eye lenses). 
Moreover, some of them require special setting of the scene and expensive equipment 
(Bakstein & Pajdla, 2002; Gluckman & Nayar, 1998). For instance, in (Bakstein & Pajdla, 
2002), a fish-eye lens with a 183° field of view is used as an omnidirectional sensor. Then, 
the calibration is performed by using a half-cylindrical calibration pattern perpendicular to 
the camera sensor, which rotates on a turntable.  
In (Geyer & Daniilidis, 2002; Kang, 2000), the authors treat the case of a parabolic mirror. In 
(Geyer & Daniilidis, 2002), it is shown that vanishing points lie on a conic section which 
encodes the entire calibration information. Thus, the projections of two sets of parallel lines 
suffice for the intrinsic camera calibration. However, this property does not apply to non-
parabolic mirrors. Therefore, the proposed technique cannot be easily generalized to other 
kinds of sensors.  
In contrast with the techniques mentioned so far, the methods described in (Kang, 2000; 
Micusik & Pajdla, 2003; Micusik et al., 2004) fall in the self-calibration category. These 
methods require no calibration pattern, nor a priori knowledge about the scene. The only 
assumption is the capability to automatically find point correspondences in a set of 
panoramic images of the same scene. Then, calibration is directly performed by epipolar 
geometry by minimizing an objective function. In (Kang, 2000), this is done by employing a 
parabolic mirror, while in (Micusik & Pajdla, 2003; Micusik et al., 2004) a fish-eye lens with a 
view angle greater than 180° is used. However, besides focusing on particular sensor types, 
the mentioned self-calibration techniques may suffer in case of tracking difficulties and of a 
small number of features points (Bougnoux, 1998).  
The calibration methods described so far focus on particular sensor types, such as parabolic 
and hyperbolic mirrors or fish-eye lenses. In contrast with these methods, in the last years, 
novel calibration techniques have been developed, which apply to any central 
omnidirectional camera. For instance, in (Micusik & Pajdla, 2004), the authors extend the 
geometric distortion model and the self-calibration procedure described in (Micusik & 
Pajdla, 2003), including mirrors, fish-eye lenses, and non-central cameras. In (Ying & Hu, 
2004; Barreto & Araujo, 2005), the authors describe a method for central catadioptric 
cameras using geometric invariants. They show that any central catadioptric system can be 
fully calibrated from an image of three or more lines. 
The work described in this chapter also handles with calibration of any central 
omnidirectional camera but aims at providing a technique that is very easy to apply also for 
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the inexpert user. Indeed, our technique requires the use of a chessboard-like pattern that is 
shown by the user at a few different positions and orientations. Then, the user is only asked 
to click on the corner points of the images of the pattern. 
The strong point of our technique resides in the use of a new camera model that adapts 
according to the appearance of the pattern in the omnidirectional images. The peculiarity of 
this model is that it can also handle the cases where the single effective viewpoint property 
is not perfectly satisfied. Indeed, although several omnidirectional cameras exist directly 
manufactured to have this property, for a catadioptric system this requires to accurately 
align the camera and the mirror axes. In addition, the focus point of the mirror has to 
coincide with the optical center of the camera. Since it is very difficult to avoid camera-
mirror misalignments, an incorrectly aligned catadioptric sensor can lead to a quasi single 
viewpoint system (Swaminathan & Grossberg, 2001). 
The method described in this chapter was first introduced in (Scaramuzza et al., 2006). In 
that work, we proposed a generalized parametric model of the sensor, which is suitable to 
different kinds of omnidirectional vision systems, both catadioptric and dioptric. In that 
model, we assume that the imaging function, which manages the projection of a 3D real 
point onto a pixel of the image plane, can be described by a Taylor series expansion whose 
coefficients are the parameters to be calibrated. 
In this chapter, we will first summarize the generalized camera model (section 3) and the 
calibration method introduced in our previous work (section 4). Then, in section 5, we will 
introduce our Matlab Toolbox (named OcamCalib Toolbox). There, we will outline the 
features of the toolbox, with particular regard to the automatic detection of the center of the 
omnidirectional camera. Indeed, in previous works, the detection of the center is performed 
by exploiting the visibility of the circular external boundary of the mirror. In those works, 
the mirror boundary is first enhanced by using an edge detector, and then, a circle is fitted 
to the edge points to identify the location of the center. In our approach, we no longer need 
the visibility of the mirror boundary. The algorithm described in this chapter is based on an 
iterative procedure that uses only the points selected by the user.  
In section 6, the performance of our toolbox will be evaluated through calibration 
experiments.

3. Omnidirectional Camera Model 

In this section, we describe our omnidirectional camera model. In the general central camera 
model, we identify two distinct reference systems: the camera image plane )','( vu  and the 
sensor plane )'',''( vu . The camera image plane coincides with the camera CCD, where the 
points are expressed in pixel coordinates. The sensor plane is a hypothetical plane 
orthogonal to the mirror axis, with the origin located at the plane-axis intersection. 
In figure 1, the two reference planes are shown for the case of a catadioptric system. In the 
dioptric case, the sign of u’’ would be reversed because of the absence of a reflective surface. 
All coordinates will be expressed in the coordinate system placed in O, with the z-axis 
aligned with the sensor axis (see Figure 1.a). 
Let X  be a scene point. Then, assume T]'',''[ vu='u'  be the projection of X  onto the sensor 
plane, and T]','[ vu=u'  its image in the camera plane (Figure 1.b and 1.c). As observed in 
(Micusik & Pajdla, 2003), the two systems are related by an affine transformation, which 
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incorporates the digitizing process and small axes misalignments; thus tA += u''u' ,
where 22A xℜ∈ and 12t xℜ∈ .
At this point, we can introduce the imaging function g, which captures the relationship 
between a point 'u' , in the sensor plane, and the vector p emanating from the viewpoint O
to a scene point X (see figure 1.a). By doing so, the relation between a pixel point u’ and a 
scene point X is: 

( ) ( ) 0,  PtA >=+⋅=⋅=⋅ λλλλ Xu'g'u'gp ,  (1) 

where 4ℜ∈X is expressed in homogeneous coordinates and 3x4P ℜ∈ is the perspective 
projection matrix. By calibration of the omnidirectional camera we mean the estimation of 
the matrices A and t and the non linear function g, so that all vectors ( )tA +u'g  satisfy the 
projection equation (1). We assume for g the following expression 

( ) ( )( )T
, u'',v''fu'',v''u'',v'' =g   (2) 

Furthermore, we assume that function f depends on u’’ and v’’ only through 22 '''''' vu +=ρ .
This hypothesis corresponds to assume that function g is rotationally symmetric with 
respect to the sensor axis. 

(a) (b) (c) 

Figure 1. (a) Coordinate system in the catadioptric case. (b) Sensor plane, in metric 
coordinates. (c) Camera image plane, expressed in pixel coordinates. (b) and (c) are related 
by an affine transformation 

Function f  can have various forms depending on the mirror or the lens construction. These 
functions can be found in (Kumler & Bauer, 2000), (Micusik et al., 2004), and (Svoboda & 
Pajdla, 2002). Unlike using a specific model for the sensor in use, we choose to apply a 
generalized parametric model of f , which is suitable to different kinds of sensors. The 
reason for doing so, is that we want this model to compensate for any misalignment 
between the focus point of the mirror (or the fisheye lens) and the camera optical center. 
Furthermore, we desire our generalized function to approximately hold with those sensors 
where the single viewpoint property is not exactly verified (e.g. generic fisheye cameras). 
We propose the following polynomial form for f

( ) N
Naaaau'',v''f ,,2,,

2

,,

10 ... ρρρ ++++=   (3) 

where the coefficients ...N2,1,0,, =iai  and the polynomial degree N are the calibration 
parameters that we want to determine. This polynomial description of f  can be more 
simplified by considering that all previous definitions of f always satisfy the following: 
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0

0

=
=ρρd

df   (4) 

This property holds for hyperbolic and parabolic mirrors or fisheye cameras (see (Kumler & 
Bauer, 2000), (Micusik et al., 2004), and (Svoboda & Pajdla, 2002)). 
This simplification allows us to assume 01 =a , and thus (3) can be rewritten as: 

( ) N
Naaau'',v''f ,,2,,

20 ... ρρ +++=   (5) 

As a consequence, we reduced the number of parameters to be estimated. 
To resume, equation (1) can be rewritten as 

( ) ( )
( ) 0,P

'',''

tA
tA

''

''

''

>⋅=
+

⋅=+⋅=⋅ λλλλ X
u'

u'g
vuf

w
v
u

  (6) 

4. Camera Calibration 

4.1 Solving for intrinsic and extrinsic parameters 

According to what we told so far, to calibrate an omnidirectional camera, we have to 
estimate the parameters A, t, ,...,,

20
aa and Na .

In our approach, we decided to separate the estimation of these parameters into two stages. 
In one, we estimate the affine parameters A and t. In the other one, we estimate the 
coefficients ,...,,

20
aa  and Na .

The parameters A and t describe the affine transformation that relates the sensor plane to the 
camera plane (figures 1.b and 1.c). A is the stretch matrix and t is the translation vector 

ccOI (figure 1.c).  To estimate A and t we introduce a method, which, unlike other previous 
works, does not require the visibility of the circular external boundary of the mirror 
(sketched by the ellipse in figure 1.c). This method is based on an iterative procedure, which 
starts by setting A to the identity matrix Eye and t=0. This assumption means that the 
camera plane and the sensor plane initially coincide. The correct elements of A will be 
estimated afterwards by non linear refinement, while t will be estimated by an iterative 
search algorithm. This approach will be detailed in section 4.3. 
According to this, from now on we assume A=Eye and t=0, which means u''u' = . Thus, by 
substituting this relation in (6) and using (5), we have the following projection equation 

( )
( )

0,P

'...'

'

'

'

'

'

''

''

''

2

20

>⋅=
+++

⋅=⋅=⋅=⋅ λ
ρρ

λ
ρ

λλλ Xu'g
N

Naaa
v
u

f
v
u

w
v
u

  (7) 

where now 'u and 'v  are the pixel coordinates of an image point with respect to the image 
center, and 'ρ is the Euclidean distance. Also, observe that now only N parameters 
( Naaa ,...,, 20 ) need to be estimated. From now on, we will refer to these parameters as 
intrinsic parameters. 
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During the calibration procedure, a planar pattern of known geometry is shown at different 
unknown positions, which are related to the sensor coordinate system by a rotation 
matrix 33xR ℜ∈ and a translation 13xT ℜ∈ . R and T will be referred to as extrinsic parameters. 
Let iI be an observed image of the calibration pattern, ],,[ ijijijij ZYX=M the 3D coordinates of 

its points in the pattern coordinate system, and T],[ ijijij vu=m the correspondent pixel 
coordinates in the image plane. Since we assumed the pattern to be planar, without loss of 
generality we have 0=ijZ . Then, equation (7) becomes: 

[ ] [ ]⋅=⋅=⋅=

+++

⋅=⋅
1

1

0
P

'...'

232

i

2

20

ij

ij
ij

ij

N
N

ij

ij

ijij Y
X

T
Y
X

T

aaa

v
u

iii
1

iiii
1ij rrrrrXp

ρρ

λλ  (8) 

where 21 r,r and 3r are the column vectors of R.
Therefore, in order to solve for camera calibration, the extrinsic parameters have also to be 
determined for each pose of the calibration pattern. 
Observing equation (8), we can eliminate the dependence from the depth scale ijλ by
multiplying both sides of the equation vectorially by ijp . This implies that each point jp
contributes three homogeneous non linear equations 

0)()()(
2222133231

=++⋅−++⋅ tYrXrftYrXrv jjjjjj ρ (9.1)
0)()()(

3323111211
=++⋅−++⋅ tYrXrutYrXrf jjjjjjρ (9.2)

0)()(
1121122221

=++⋅−++⋅ tYrXrvtYrXru jjjjjj (9.3)

where the sub-index i has been removed to lighten the notation, and 21 , tt and 3t are the 
elements of T.
Observe that in (9), jj YX , and jZ are known, and so are jj vu , . Also, observe that only (9.3) 
is linear in the unknown 2122211211 ,,,,, ttrrrr .
From now on, the details for the resolution of equation (9) can be found in (Scaramuzza et 
al., 2006). The principle of the technique consists first in solving for the parameters 

,,,,, 122211211 trrrr and 2t  by linearly solving equation (9.3). Next, we use the solution of (9.3) as 
input to (9.1) and (9.2), and solve for the remaining parameters Naaa ,...,, 20 and 3t . In both 
steps, the solution is achieved by using linear least-square minimization. 
Up to now, we didn’t specify which polynomial degree N one should use. To compute the 
best N, we actually start from N=2. Then, we increase N by unitary steps and we compute 
the average value of the reprojection error of all calibration points. The procedure stops 
when a minimum error is found. Typical empirical values for N are usually N=3 or N=4.

4.2 Detection of the Image Center 

As stated in sections 1 and 2, a peculiarity of our calibration toolbox is that it requires the 
minimum user interaction. One of the tools that accomplish this task is its capability of 
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identifying the center of the omnidirectional image cO (figure 1.c) even when the external 
boundary of the sensor is not visible in the image. 
At the beginning of section 4.1, we made the following assumptions for A and t, namely 
A=Eye and t=0. Then, we derived the equations for solving for the intrinsic and extrinsic 
parameters that are valid only under those assumptions. 

X

Y

X

Y

O

(a) (b) 

Figure 2. When the position of the center is correct, the 3D points of the checker board do 
correctly project (green rounds) onto the calibration points (red crosses) (a). Conversely, 
when the position of the center is wrong, the points do not project onto the real calibration 
points (b) 

In figure 2.a, the reader can see what happens when the position of the center is correct. The 
red crosses are the input calibration points selected by the user. The green rounds are the 3D 
points reprojected onto the images according to the intrinsic and extrinsic parameters 
estimated by the calibration. As the reader can see, the 3D points perfectly overlay the input 
points, meaning that the calibration worked properly. Figure 2.b shows the result when the 
input position of the center is wrong, that is, the reprojection error is large. Motivated by 
this observation, we performed many trials of our calibration procedure for different center 
locations, and, for each trial, we computed the Sum of Squared Reprojection Errors (SSRE). 
As a result, we verified that the SSRE always has a global minimum at the correct center 
location. 
This result leads us to an exhaustive search of the center cO , which stops when the 
difference between two potential center locations is smaller than a certain  (we used =0.5 
pixels). The algorithm is the following: 
1. At each step of this iterative search, a fixed number of candidate center locations is 

uniformly selected from a given image region (see figure 3). 
2. For each of these points, calibration is performed by using that point as a potential 

center location and SSRE is computed.  
3. The point providing the minimum SSRE is taken as a potential center.  
4. The search proceeds by selecting other candidate locations in the region around that 

point, and steps 1, 2 and 3 are repeated until the stop-condition is satisfied. 
Observe that the computational cost of this iterative search is so low that it takes less than 3 
seconds to stop. 
At this point, the reader might be wondering how we do estimate the elements of matrix A.
In fact, at the beginning we assumed A=Eye. The iterative algorithm mentioned above 
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exhaustively searches the location of the center (namely cO ) by leaving A unchanged. The 
reason for doing so is that the eccentricity of the external boundary of an omnidirectional 
image is usually close to zero, which means A~Eye. Therefore, we chose to estimate A in a 
second stage by using a non linear minimization method, which is described in section 4.3.  

Figure 3. An omnidirectional image used for calibration with a chessboard used as a 
calibration pattern. The red points identify the candidate center locations taken during the 
first step of the algorithm. At each step, the candidate points occupy a smaller and smaller 
region around the final convergence point 

4.3 Non Linear Refinement 

The linear solution given in section 4.1 is obtained through minimizing an algebraic 
distance, which is not physically meaningful. To this end, we chose to refine the calibration 
parameters through maximum likelihood inference. 
Let us assume that we are given K images of a model plane, each one containing L corner
points. Next, let us assume that the image points are corrupted by independent and 
identically distributed noise. Then, the maximum likelihood estimate can be obtained by 
minimizing the following functional: 

( )
= =

−=
K

i

L

j
N20cij ,,...,a,aaO,ARmmE

1 1

2
^

,,, jii MT   (10) 

where ( )jii MT ,,...,a,aaO,ARm N20c ,,,
^

is the reprojection of the point jM of the plane i
according to equation (1). iR and iT are the rotation and translation matrices of each plane 
pose. iR is parameterized by a vector of 3 parameters related to iR by the Rodrigues formula. 
Observe that now we incorporate into the functional both the stretch matrix A and the 
center of the omnidirectional image cO .
By minimizing the functional defined in (10), we actually find the calibration parameters 
which minimize the reprojection error. In order to speed up the convergence, we decided to 
split the non linear minimization into two steps. The first one refines the extrinsic 
parameters, ignoring the intrinsic ones. Then, the second step uses the extrinsic parameters 
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just estimated, and refines the intrinsic ones. By performing many simulations, we found 
that this splitting does not affect the final result with respect to a global minimization. 
To minimize (10), we used the Levenberg-Marquadt algorithm (Levenberg, 1944; 
Marquardt, 1963), as implemented in the Matlab function lsqnonlin. The algorithm 
requires an initial guess for the parameters. These initial parameters are the ones obtained 
using the linear technique described in section 4.1. As a first guess for A, we used the 
identity matrix, while for cO  we used the position estimated through the iterative 
procedure explained in subsection 4.2. 

5. Introduction to the OcamCalib Toolbox for Matlab 

The reason we implemented the OcamCalib Toolbox for Matlab is to allow any user to easily 
and quickly calibrate his own omnidirectional camera. The OcamCalib toolbox can be freely 
downloaded from the Internet (e.g. google for “ocamcalib”). The outstanding features of the 
toolbox are the following: 
• Capability of calibrating different kinds of central omnidirectional cameras without any 

knowledge about the parameters of the camera or about the shape of the mirror. 
• Automatic detection of the center. 
• Visual feedback about the quality of the calibration result by reprojecting the 3D points 

onto the input images. 
• Computer assisted selection of the input points. Indeed, the selection of the corner 

points on the calibration pattern is assisted by a corner detector. 

Figure 4. The graphical user interface of the OcamCalib Toolbox 

Figure 5. Some pictures with the checker board used as a calibration grid. In our 
experiments, we used at least 5 or more images with the grid shown all around the camera 

The user interface of the toolbox is depicted in figure 4. After having collected a few pictures 
of a chessboard shown all around the omnidirectional camera (see figure 5), the images can 
be loaded for calibration (i.e. use “Read names”). In the second step, the user can start 
selecting the corner points of the pattern using the “Extracting grid corners” tool. By this 
tool, the user is asked to click on all the corner points by following the left-right order. To 
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achieve high accuracy in the selection of the input points, the clicking is assisted by a Harris 
base corner detector (Harris & Stephens, 1988). 
In the third step, the calibration can be done by means of two tools. The “Calibration” tool 
will ask the user to specify the position of the center in case he knows, if not, the user can 
directly use the “Find center” tool, which automatically applies the iterative search 
algorithm described in 4.2. In both cases, the calibration is performed by using the linear 
estimation technique mentioned in 4.1. The optimal calibration parameters in the maximum 
likelihood sense can be estimated by the “Calibration Refinement” tool, which implements 
the non linear minimization described in 4.3. After the previous steps, the user can choose 
among several tools: 
• “Show Extrinsic” visualizes the reconstructed 3D poses of the grid in the camera 

reference frame (figure 6). 
• “Analyze error” visualizes the reprojection error of each calibration point along the x-y-

axes.
• “Reproject on images” reprojects all the 3D points onto the images according to the 

calibrated parameters. 
• “Recompute corners” attempts to automatically recompute the position of every corner 

point hand selected by the user. This is done by using the reprojected 3D points as 
initial guess locations for the corners. 

Figure 6. A picture of our simulator showing several calibration patterns and the virtual 
omnidirectional camera at the axis origin 

After the calibration, all the parameter can be accessed through the structure 
“ocam_model”. The calibrated camera model can then be used for other applications by 
means of the following two functions: 
• m = world2cam(M, ocam_model), which reprojects a 3D point (M) onto the image and 

returns its pixel coordinates (m).
• M = cam2world(m, ocam_model), which, for every image point m, returns the 3D 

coordinates of the correspondent vector (M) emanating from the single effective 
viewpoint. This function is the inverse of the previous one. 
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6. Results 

We evaluated the performance of our toolbox through calibration experiments both on 
synthetic and real images. In particular, we used synthetic images to study the robustness of 
our calibration technique in case of inaccuracy in detecting the calibration points. To this 
end, we generated several synthetic poses of a calibration pattern. Then, Gaussian noise 
with zero mean and standard deviation  was added to the projected image points. We 
varied the noise level from =0.1 to =3.0 pixels, and, for each noise level, we performed 100 
independent calibration trials and computed the mean reprojection error. Figure 7 shows the 
plot of the reprojection error as a function of . Observe that we separated the results 
obtained by using the linear minimization alone from the results of the non linear 
refinement. As the reader can see, in both cases the average error increases linearly with the 
noise level. Furthermore, the reprojection error of the non linear estimation keeps always 
smaller than the error computed by the linear method. Finally, notice that when =1.0,
which is larger than the normal noise in practical situations, the average reprojection error 
of the non linear method is lower than 0.4 pixels. 

0 0.5 1 1.5 2 2.5 3
0
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1

1.5

2

Figure 7. The reprojection error versus . The dashed line represents the results obtained by 
using the linear minimization alone. The solid line shows the results after the non linear 
refinement. Both units are considered in pixels 

An indirect method to evaluate the quality of the calibration of a real camera consists in 
reconstructing the 3D structure of an object from its images and checking then the quality of 
the reconstruction. This problem is known by the computer vision community as structure 
from motion. The object we used in this experiment is a trihedron made up of three 
orthogonal chessboard-like patterns of known geometry (see figure 8.a). Our 
omnidirectional camera is KAIDAN 360° One VR with a hyperbolic mirror. 
After having calibrated the camera, we took two images of the trihedron from two different 
unknown positions (see figure 8.b). Next, several point matches were hand selected from 
both views of the object and the Eight Point algorithm was applied (Longuet-Higgins, 1981). 
In order to obtain good reconstruction results, more than eight points (we used 135 points) 
were used. The method mentioned so far gives a first good 3D reconstruction of the points. 
A better estimation of the 3D structure can be obtained by densely using all the pixels of the 
images. To accomplish this task, we used the first estimation along with normalized cross 
correlation to automatically match all the points of the image pair. Finally, all matches were 
used to compute the structure. The results of the reconstruction are shown in figure 8.c. 
As the reconstruction with one single camera can be done up to a scale factor, we recovered 
the scale factor by comparing the average size of a reconstructed checker with the real size 
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on the trihedron. In the end, we computed the angles between the three planes fitting the 
reconstructed points and we found the following values: 94.6°, 86.8° and 85.3°. Moreover, 
the average distances of these points from the fitted planes were respectively 0.05 cm, 0.75 
cm and 0.07 cm. Finally, being the size of each checker 6.0 cm x 6.0 cm, we also calculated 
the dimension of every reconstructed checker and we found an average error of 0.3 cm. 
These results comply with the expected orthogonality of the surfaces and the size of the 
checkers in the ground truth. 

Figure 8. (a) The object to be reconstructed. (b) Two omnidirectional pictures of the object 
taken from two unknown positions. (c) Dense 3D reconstruction of the object. The 
reconstruction is very good, meaning that the model of the camera was well estimated 

7. Conclusion 

In this chapter, we presented a method for calibrating any central omnidirectional camera 
both dioptric or catadioptric. The method relies on a generalized parametric function that 
describes the relation between a given pixel point and the correspondent 3D vector 
emanating from the single effective view point of the camera. We describe this function by 
means of a polynomial expansion whose coefficients are the parameters to be calibrated. 
Furthermore, we presented a toolbox for Matlab (named OcamCalib) that implements the 
mentioned calibration procedure. The toolbox is available on-line. We described the tools 
and the main features of our toolbox, one of which being the capability to automatically 
identify the center of the omnidirectional image. The toolbox relies on the use of a 
chessboard-like calibration pattern that is shown by the user at a few different positions and 
orientations. Then, the user is only asked to click on the corner points of the patterns. The 
performance of the toolbox was finally evaluated through experiments both on synthetic 
and real images. Because of its ease of use, the toolbox turns out to be very practical, and 
allows any inexpert user to calibrate his own omnidirectional camera.  
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1. Introduction 

Measuring and recognising the surfaces of the surrounding world forms a ubiquitous 
problem in automation and robotics. The knowledge of the environment allows a flexible 
and autonomous behaviour in different situations. Stereo vision belongs to the most popular 
techniques for gathering this information because it provides the dense depth information 
necessary for complex grasping tasks. Compared to laser scanners stereo cameras also have 
the advantage of higher framerates, so they are widely used for mobile robots. Porta (2005) 
e.g. uses the Small Vision stereo system (Konolige, 1997) to enhance localisation of a mobile 
robot: Features from depth maps are used additionally to appearance based intensity 
features. Other examples include Zhu et al. (2004) or Kang et al. (1995). However, the main 
problems of stereo vision remain speed and robustness. In order to accelerate the time-
consuming registration of the stereo images and avoid specialised hardware, Sun (2002) 
employs an intelligent subregioning mechanism which reduces the search space of the 
correspondence analysis. Another approach builds upon the usage of modern SIMD 
processor instructions as documented by Sunyoto et al. (2004). Kim et al. (2005) on the other 
hand achieve real-time behaviour by segmenting foreground objects from the background. 
Depth information is then only updated for moving objects. Of course this approach is 
problematic for mobile robots. The lack of robustness of stereo analysis for particular scenes 
mainly arises from depth discontinuities and ambiguous surface texture. Kang et al. (1995) 
avoid these ambiguities by projecting textured light on the scene, but this is no general 
solution. Kim et al. (2005) made experiments with an adaptive matching window to increase 
the accuracy near edges. Zhao and Katupitiya (2006) examined the effect of occlusion and 
developed a method that detects occlusion areas and adapts a matching window 
appropriately. To evaluate and compare the robustness of different stereo algorithms, 
Scharstein et al. (2001) propose a taxonomy for different stereo algorithms and create a 
testbed including stereo images with groundtruth. Using this testbed we will document  the 
results of the software system for the computation of dense disparity maps presented here. 
Our stereo system unites some of the speed optimisations mentioned above and hence 
achieves real-time behaviour. The calibration procedure and some comments on the 
brightness change constraint will be given. We will also present results for the distance 
measurements with a PMD camera (“Photonic Mixer Device”, Schwarte (2001), Kraft et al. 
(2004)) which is a technique for measuring the distance of an object by the time of flight of 
an active infrared illumination. The calibration procedure and the specifics of the 
measurements will be described, especially for scenes with surfaces almost in parallel to the 
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optical axis of the system. Finally the results on combining the stereo and PMD technique 
will be given, discussing the advantages and disadvantages. 

2. Stereo 

Depth measurement by stereo vision algorithm is done by computing a so called (sparse or 
dense) disparity map. Disparity maps encode the depth for each reference pixel in the stereo 
images. Using the well-known stereo geometry formula 12 and the disparity map, one can 
easily calculate the depth value of any given pixel. The calculation of disparity maps leads 
to the so called stereo correspondence problem.
The stereo correspondence problem can be formulated as the problem to efficiently traverse 
a two-dimensional search space consisting of any intensity value at any position in the 
stereo images. Algorithms finding corresponding pixel pairs in acceptable time will be 
presented later.  
When one pixel of one stereo image is compared with one pixel of the other stereo image, 
the degree of correspondence between these pixels is calculated using a certain metric. Two 
of the most prominent metrics are the sum of absolute differences (SAD) and the sum of squared 
differences (SSD). Both metrics have in common that they calculate the correspondence value 
over a certain block size. This block size is usually represented by a rectangular region pixel 
by pixel around the pixels that are to be matched. SAD sums up both rectangular regions 
and takes the absolute value of the difference of these sums, whereas SSD takes the squared 
value of the difference of these sums. Both functions can be efficiently computed using 
modern SIMD (Single Instruction, Multiple Data) processor instruction sets. 

2.1 Review 

In this part we review various stereo correspondence algorithms for the traversing of the 
two-dimensional search space mentioned earlier. First these algorithms are briefly 
described, then concrete implementations of these algorithms are discussed. 
All of the reviewed algorithms belong to the class of block-matching methods along a 
horizontal scanline. Therefore, the images must be - at least approximately – rectified if the 
optical axes of the cameras are not adjusted in parallel. Due to the rectification and the 
epipolar constraint (see Faugeras, 1993), it can be presumed that corresponding pixels in 
stereo image pairs can be found on the same horizontal lines in both images. Then we define 
a three-dimensional correspondence candidate matrix (also called cost matrix) C(x,y,d(x,y))
holding all disparity value candidates d of a given reference pixel at position (x,y). After 
building this matrix, one needs to find efficient algorithms for reordering the optimal 
disparity value for any given reference pixel. Several geometric and object specific 
constraints reduce the search space and lead to an increase in both speed and quality of the 
results of the correspondence analysis. A set of the most important constraints is given in 
the following. 
The so called brightness change constraint states that if a pixel in one of the stereo images has a 
corresponding pixel in the other image, the intensity values of these pixels need to be same. 
Fulfilling this requirement makes a reliable pixel matching even possible, because all of the 
later discussed algorithms work intensity based. This is actually one of the most important 
constraints concerning the quality of the correspondence analysis’ results. 
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Figure 1. Incoming light ray (marked red) with angle ),( iii ϕθ=  and outgoing/reflected light 
ray (marked green) with angle ),( ooo ϕθ=  at point x

Object surfaces need to be piecewise smooth. This prerequisite ensures that corresponding 
pixel pairs in both images have almost the same disparity values. This enables a further 
reduction of the search space, because corresponding pixels can be found around a certain 
offset on a scanline in the analyzed image.  
The object surfaces are highly textured. The more textured the surfaces are, the more reliably 
corresponding pixels can be found. If for instance an object surface has only one colour, it is 
almost impossible to distinguish corresponding pixels from non-corresponding pixels on 
these surfaces because they look identical.  
The monotony constraint demands that, if the stereo images are rectified, corresponding pixel 
pairs are to be searched in the same direction on a scanline. That means fulfilling the 
monotony constraint, the pixel pairs’ occurrence is ordered on the scanlines. 
As a last important constraint the objects are supposed to be equally visible for both cameras 
of the stereo-system. That means, objects in a scene are not partially occluded. Partial 
occlusion leads to different projections of the same object onto the image planes of the 
stereo-cameras, because the cameras look at the objects from slightly different angles. The 
consequence of that effect is that the left and the right stereo image possess different, even 
mutually exclusive information of the object in the scene. Hence errors can be expected 
when trying to match pixels in one image along a scanline in the other image where the 
other image actually has no information about these pixels at all. 
As being said, the brightness change constraint belongs to the most important constraints 
for the set of intensity based stereo matching algorithms. The majority of errors occurring in 
the matching process can be classified as violations of this constraint. The reason why this 
constraint is so easily violated is mainly due to the angle dependent reflection properties of an 
object as well as the problem of subpixel edge shift.
The reflection properties of an object mainly depend on the surface of the object as well as 
on the light reaching the object surface. These two factors determine the equation of the 
reflected light intensity 

iiiioioo dLfL ωθΩ →= cos),(),(),( xxx , (1) 
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where ),( iii ϕθ=  and ),( ooo ϕθ=  denote the solid angle of incoming and reflected light rays 
at point x  as shown in Figure 1. 
L1 and L2 denote the light intensities of the incoming and outgoing direction of the light 
rays. The term ),( oif x →  represents the so called bidirectional reflectance distribution function
(BRDF) measuring the physical reflectance behaviour of the surface material. For any light 
ray with given entry angle  hitting the object at point x , the BRDF yields the quotient of 
irradiance and emittance of any reflected light ray. The model of the BRDF is based on the 
concept of so called micro facets. Micro facets are microscopically small mirrors randomly 
aligned and distributed all over the object’s surface. The alignment of these mirrors is 
determined by the probability distribution of eq. 2: 
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F denotes the fresnel-factor which models the fraction properties of the object material, D is 
the probability distribution function of the micro facets and G is the geometry factor modelling 
shading between the micro facets. An in-depth look into the complex mathematical 
deduction of these parameters can be found in related textbooks. To yield the overall light 
intensity reflected from a point x , one has to integrate over the entire spatial angle . This 
complex procedure requires extensive computation time.  
The problem of subpixel edge shift results from to the inherently limited resolution of 
cameras. To measure the light intensity of a pixel of recorded scene, the camera has to 
integrate the light intensity over a certain area of the scene predetermined by the camera 
resolution. This causes problems on edges in the scene, because edges typically mark an 
abrupt change in light intensity values. So the integration process averages the light 
intensities in the given areas over the edges. Due to high angle dependency of the projection 
of edges (as described earlier) in such a subpixel integration area, the intensity values of 
corresponding pixels may differ significantly. This problem can be reduced just slightly by 
using high resolution cameras.  
Hence, when performing intensity based stereo correspondence analysis, one always has to 
consider these inherent problems. There is no general solution to address these problems 
and the results need to be interpreted respectively. In the following sections some of the 
most popular approaches of stereo correspondence analysis are presented. 

2.1.1 Winner Takes it All (WTA) 

One of the simplest algorithms for searching in the matching matrix is the Winner Takes it All 
method. WTA works as follows: For a given reference pixel WTA walks through the cost 
matrix selecting that pixel which has the lowest difference to the reference pixel. This is a 
simple minimum search on a given set of numbers. It is also a local method, because the 
algorithm operates only on one vector of the matching matrix for each reference pixel. 
The biggest advantage of such a primitive local method is the easy way of its 
implementation. Furthermore WTA can most easily be optimized. The disadvantages on the 
other hand are that local methods highly depend on the constraints discussed earlier. There 
is also the possibility that identical pixels of the cost matrix are assigned to reference pixels 
more than once. 
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2.1.2 Global Methods 

In contrast to local methods, global methods perceive the stereo correspondence problems 
as the problem of minimizing a global energy function. The goal is to find a disparity 
function d which minimizes the global energy function 

)()()( dEdEdE sd λ+= , (3) 

as it is described in (Scharstein & Szeliski, 2001). The term )(dEd
 measures how well the 

disparity function d matches the stereo pixel pair which is to be evaluated. This is done by 
eq. 4 which takes all possible corresponding pixel pairs into account. is a global constant 
denoting a weight for )(dEs
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)(dEs
 is responsible for introducing the piecewise smoothness-constraint.

After stating the global energy function to be optimized, we now show some popular 
algorithm for its optimization. 

2.1.3 Dynamic Programming (DP) with Scanline Optimization (SO) 

The optimization of regular functions )(dEs
 using naïve approaches is an NP complete 

problem. The use of a dynamic programming approach helps finding the global minimum of 
mutually independent scanlines in polynomial time.  
DP was first introduced by Richard Bellman in 1953. It describes the process of solving 
complex problems where one has to find the best decisions to solve this problem one after 
another. The basic idea of DP is to break down the complex problem into smaller 
subproblems. After solving these subproblems optimally, the original problem can be 
solved. The subproblems themselves are broken down into smaller subproblems and so 
forth until the subproblems have a trivial solution. An important step in DP is memorising 
(also called memoization) the solutions of the already solved subproblems. Otherwise one 
would have to compute the solutions to the same subproblems over and over again as in the 
simple recursive approach of computing Fibonacci numbers. DP is especially well suited for 
finding shortest paths in matrices with associated cost values. 
In our case the correspondence analysis is treated like an n-dimensional search problem. The 
matching costs (defined as the SAD or SSD values of the examined pixel pairs) of every point 
of a scanline assemble the search space. Hence this is a global method. In contrast to local 
methods (like WTA) not just certain pairs of pixels are taken into account, but a two-
dimensional matrix of candidate pixels is considered. Such a matrix is constructed of all 
reference pixels versus their corresponding candidate pixels. To find the best corresponding 
pixel out of the candidates, one has to find the shortest path with lowest matching costs in 
the matrix. 
We use x-d-submatrices of the whole cost matrix C(x,y,d(x,y)) as subproblems that are to be 
optimized. Firstly a certain area in which the path will be searched is preselected. The 
preselection is done to save computing time and the width of that area may vary. Secondly 
for every pair of corresponding scanlines in the left and right stereo image, the shortest path 
through the matrix with least pairwise matching costs is selected.  
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An extension to the classical dynamic programming approach presented above, is the 
scanline optimization for which the same prerequisites as discussed above apply. An 
additional cost-constant is introduced distributing penalties to the candidate pixels, if the 
values of neighbouring pixels differ too much (like it is the case at object edges). Hence big 
jumps in disparities are highly penalized disqualifying themselves for the later path search. 
The decision when to penalize a disparity value is predefined. 
Dynamic programming algorithms have the advantage of a higher robustness compared to 
local methods. This especially holds true if some of the constraints of section 2.1 are not 
fulfilled. The algorithms exploit the monotony and piecewise-smoothness constraint so that 
the search space for disparity values can be reduced to pixels located on object surfaces. So it 
is not possible to select a candidate pixel that is actually located far from the object surface 
but coincidentally possesses almost an identical intensity value to the reference pixel. 
The disadvantage on the other hand is the problem of finding a suitable path in the search 
space concerning partially occluded pixels. Another drawback is the heavily increased 
computing time compared to simple local methods.  

2.1.4 Simulated Annealing (SA) 

Simulated annealing is a heuristically based method in computer science. It is used to solve 
optimization problems that have a high complexity, which makes going through all 
combinations to solve the problem computationally infeasible. 
SA is inspired by natural annealing processes. For instance, the slow annealing of liquid 
metal provides enough time for the molecules inside the metal to align them in a way to 
build a stable crystal structure. That way a low energy state is achieved close to the 
optimum. Transferred to our optimization problem the temperature corresponds to an 
acceptance threshold. Below that threshold an intermediate result of the optimization 
process is still allowed to temporarily worsen.  
There are two major algorithms in this field: the metropolis algorithm and the hill climbing 
algorithm. The hill climbing algorithm has the ability to leave a local optimum trying to find 
an even better one. Hence it is the more sophisticated algorithm. A more detailed 
description of these two algorithms can be found in (Metropolis; Rosenbluth & Teller, 1953). 
Simulated annealing yields a very high confidence in the stereo correspondence analysis. 
Alas it has a very bad runtime due to the very high computational complexity. There can be 
no real-time behaviour expected from algorithms falling into this category. 

2.2 Robustness 

We compared various stereo correspondence algorithms with regard to the run-time 
behaviour and the quality of the computed (dense) disparity maps. We concentrated our 
work around the implementation of Scharstein/Szeliski (Scharstein & Szeliski, 2001) from 
the Middlebury University. We optimised their original algorithms with a series of steps like 
smoothing the images first and working on recursively down sampled sub-images to 
decrease overall computing time as proposed by Sun (2002). To further decrease the 
computation time, we also used the MMX processor extensions as proposed by Sunyoto et 
al. (2004). Using sample stereo-images and their corresponding groundtruth images from the 
Middlebury University we were able to calculate the quality of the resulting disparity map 
counting the incorrect disparity values (Figure 2). We used the following formula to 
calculate these values: 
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The variable Cd  denotes one element of the calculated disparity map, whereas Td  is an 
element of the groundtruth map at position (x,y). dδ  is a fault tolerance value. We set it to 
1.0.

Figure 2. Left image and groundtruth image of sample stereo image 

Matcher Method Time [s] Bad Pixels [%] 
Schar/Szel WTA SAD 1.04 4.60 
  SSD 1.12 4.85 
 DP/SO SAD 4.34 6.46 
  SSD 4.35 6.63 
 SA SAD 158.28 4.35 
  SSD 147.88 4.54 
 building matching-matrix 0.95 N/A 
optimized WTA SAD 0.25 7.47 
Schar/Szel  SSD 0.27 6.14 
 DP/SO SAD 1.09 6.87 
  SSD 1.05 6.96 
 SA SAD 39.09 5.74 
  SSD 37.10 5.14 
 building matching-matrix 0.23 N/A 

Table 1. Performance and quality results of different matching algorithms measured on an 
AMD Athlon XP 1700+ system with 512MB RAM 

The results of the different algorithms for the example pictures shown in Figure 2 are 
presented in table 1. We used a fixes block size of 16x16 pixels. In the top half of the table 
one can see the values obtained from the original version of the Scharstein/Szeliski 
implementation. The lower half shows the values achieved with the optimizations extending 
this implementation. The second column enlists the different matching algorithms used in 
conjunction with either SAD or SSD as correspondence measurement. The last two columns 



Vision Systems: Applications 318

show the run-time behaviour as well as the quality (measured in the rate of falsely 
computed disparity values) of the implementation computing the disparity maps of the 
pictures like shown in Figure 2. The pictures are 32 Bit truecolour images with images sizes 
of 450 x 375 pixels. Figure 3 shows the corresponding disparity map and the difference 
image of the groundtruth image with the computed stereo image. 

Figure 4. Reconstructed 2.5D-view of the sample scene 

Figure 5. A left and a right image of a stereo camera 

Table 1 clearly shows that the simple WTA method performs best (in the original and
optimized version) with regard to run-time behaviour and is only slightly worse than SA 
with regard to the quality of the computed disparity values. SA on the other hand is about 
150 times slower than the simple WTA algorithm and yields to an improvement of just 
0.25% – 2.00% regarding disparity quality.  
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The difference picture of the calculated disparity maps (Figure 3 – right side) shows that 
errors mainly occur on edges due to partial occlusion. The brightness change constraint in 
this case is preserved hence leading to no additional errors. It can be expected that under  
normal conditions the brightness change constraint will be violated and DP/SO may yield 
better results than the simple WTA, because DP/SO is more robust in this case.  
Figure 3. Computed disparity map (using WTA with SSD method) and difference map 
according to the groundtruth map 
We also used other images mainly taken from the (Stereo Vision Research Page, 2007). The 
results of those pictures resemble the results presented in table 1. 
In Figure 4 we present a reconstruction of the original scene using the stereo-images and 
their corresponding disparity map. This of course cannot be a full 3D-view of the scene 
because there is only one stereo image pair made from a certain angle. Hence we call this a 
2.5D-view of the original scene. The viewer can clearly distinguish which objects were closer 
to the camera and which were lying in the background. 

2.3 Variable Block Size and Interest Operators 

Some cameras offer the possibility to automatically control the brightness of the image. 
Concerning single camera images this is often an improvement. However, for the matching 
of two images from different cameras this is a clear disadvantage. In a stereo setup the 
length of the baseline between the cameras causes deviations in the fields of view of the 
cameras, so only a part of the scene can be seen in both images. The rest of the images is 
different for the two cameras and influences the brightness control. As a result, also the 
common image parts have a different brightness. In that case we made good experiences by 
matching the derivation of the image instead of the pure image intensities.  

Figure 6. Disparities for a block size of 30x10 pixels and 60x20 pixels 

The derivative can also be used as an interest operator, to accelerate matching and  in 
particular to determine the size of the image regions being matched. The following 
explanations refer to a WTA block-matching algorithm with SSD as similarity measure. The 
algorithm finds matches by comparing a block from the left image to all positions on the 
corresponding epipolar line in the right image. Interest operators were introduced by 
Moravec (1977). Their purpose is to limit image processing operations to the relevant image 
area and save computational cost. A review on different methods can be found in Bähr and 
Vögtle (1991). We use the horizontal derivative to find textured image positions in the left 
image which can be matched robustly to the right image, and to find image positions in the 
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right image which are candidates for a correspondence. Other positions in the right image 
are not compared, which heavily reduces the computational effort. Since the robustness of 
stereo analysis relies on texture, we examined the use of maxima of the derivative as 
positions for matching. The result is a comparatively sparse disparity map because for a 
given block in the left image there is only one matching position per edge in the right image. 
The number of positions depends also on the threshold for maxima detection and often a 
correct maximum is not recognized because the gradient falls below a given threshold. 
However, the results are quite robust. To increase the number of correspondences, we 
replaced the maxima detection by simple thresholds for the gradient magnitude. We use a 
higher threshold for the left image and a lower threshold for the right image, to make sure 
we obtain all corresponding positions in the right image despite the image noise. The results 
are both more dense and more robust.  

Figure 7. Adaptive block size for the cross method and resulting disparities 

Figure 8. Adaptive block size for the region method and resulting disparities 

The stability of the stereo analysis depends also on the chosen block size. Figure 6. shows 
the disparity maps for the stereo image pair from Figure 5 for different block sizes. Light 
values indicate a higher disparity, dark areas a lower disparity. Missing values are marked 
as black. They result from the plausibility test proposed by Faugeras (1993): The matching 
result in the right image is searched for in the left image. The resulting second match should 
be the original block in the left image. If this test fails, the disparity value is discarded. For a 
block size of 30x10 pixels 53 percent of all possible disparity values could be computed. For 
a block size of 60x20 pixels this value increases to 59 percent. As can be seen from the 
picture, this is an improvement especially for homogeneous regions. The drawbacks of an 
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increased block size are the additional computational effort and the lower accuracy, in 
particular near depth discontinuities.
To overcome these disadvantages, a locally adaptive block size is introduced. In 
homogeneous regions a higher block size is chosen than in textured regions to make 
matching more robust if there are few characteristic image features. To reduce the 
inaccurateness near depth discontinuities, bigger blocks are not allowed to cross sharp 
edges. For every image position the block size is determined by evaluating the gradient 
magnitude along the respective image row and column. Starting with an initially small 
block, the block size is increased horizontally and vertically until the borders of the block 
reach an edge in the row or column through the centre pixel. If there are no edges the block 
growth is stopped after a certain maximum size has been reached. The search along a cross 
was chosen because size determination can be performed very quickly. Figure 7 shows some 
of the blocks as rectangles. Little dots indicate the edges which stopped the block growth. 
The right part of Figure 7 shows the resulting disparity map for a maximum block size of 
60x60 pixels. In comparison to the disparity map in Figure 6 the results for homogeneous 
regions have improved. On the other hand, some of the stable but inaccurate disparities near 
the edges of the monitor are missing now. This is a result of the smaller block size in 
textured image regions and absolutely correct taking into account the occlusion effects in 
that area. A drawback of this method is that only edges lying on a cross through the block 
center have an influence on the block size. The disparity values near the corners of the 
monitor hence are still inaccurate. To improve that, a second strategy for the size 
determination is examined. Starting from an initial block size the block is expanded 
alternating by one row or one column, respectively, if there is no edge in this new row or 
column. If the block growth is stopped in one dimension, it continues in the other dimension 
until also there an edge has been reached. The results can be seen in Figure 8. Concerning 
the corners of the monitor, the disparities are more accurate now, while the remaining 
values are similar to the results before. For both methods of size determination the gain in 
density and accurateness of the disparity maps has the disadvantage of a higher 
computational cost, which is primarily a result of the increased block size for homogeneous 
regions. The computation of the disparity map by the cross method took three times longer 
than for a fixed block size of 30x10 pixels. The method, which tested the whole area of a 
block for edges, was even four times slower. It should also be mentioned that the matching 
results for homogeneous regions are comparatively unstable even for large blocks. A soft 
edge at the border of a block caused by a depth change in the scene together with smoothing 
etc. can dominate the whole structure inside that block and thus influence the resulting 
disparity value. 

2.4 Post Processing: Disparity Histogram and Subpixel Accurate Disparity 

Ideally, disparity maps consist of big areas with steadily changing disparities for flat 
surfaces and abrupt changes for depth discontinuities. In homogeneous regions the results 
deviate strongly from this ideal. After removing most of these unstable disparities using a 
suitable interest operator, mid-size areas of homogeneous disparity remain. These areas are 
surrounded by areas without results. The remaining false matches appear as single 
disparities deviating much from their neighbourhood. These observations motivate the 
following assumptions: (a) A correct disparity value belongs to a certain homogeneous 
surface. It probably appears there multiple times. (b) Errors are rare. (c) Wrong disparities 



Vision Systems: Applications 322

do not belong to a certain surface and hence take on arbitrary values. The same wrong value 
appears probably only a few times. That means in reverse: Frequent disparity values are 
usually right, while rare values are often wrong. For our experiments we computed the 
histogram of disparity values and used a threshold on the histogram to discard uncommon 
values. Our experiments lead to good results for thresholds in the range of a few tenth of a 
percent. With these thresholds sometimes up to 50 percent of the removed values were 
actually wrong disparities. Of course, the results depend also on the image contents and 
perhaps a comparison with neighbouring disparity values could lead to further 
improvements. In general this is a good supporting method if most of the unstable 
disparities are already filtered out by an interest operator. Then this method discards a high 
percentage of wrong values at almost no computational cost without removing too many 
disparity values. 
For applications which require a high precision rather than high speed the disparity can be 
computed with subpixel accuracy. A robust way to determine the subpixel shift between 
two corresponding block is to minimise the square error  
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between the pixel intensities g of the block in the left image and the intensities f of the 
corresponding block right image. The variable x denotes a pixel position inside the block 
and the variable s denotes a subpixel shift along the epipolar line. The intensity of a block 
with subpixel shift is linearly interpolated using the image derivative according to the 
formula
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The subpixel shift is then obtained by finding the root of the derivation of the error, i.e. the 
value of s for which 

0)'2'22('
2 =−+= fgggsge . (10) 

The subpixel shift results thus to 
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In practice, this method leads to smooth subpixel shifts in areas of uniform disparity. 
Outliers occur only where the disparity value already deviates from the neighbourhood for 
pixel accuracy. Since at wrong positions the subpixel shift often is greater than half a pixel, 
the subpixel shift is well suited to indicate wrong disparity values. Since such great values 
correspond to a neighbouring matching position with a lower subpixel shift, the disparity 
must already be wrong at pixel level and thus can be discarded. 

2.5 Camera Calibration and Accuracy of the Distance Measurements 

We use a stereo setup with two DFK 21F04 cameras by The Imaging Source and 
Cosmicar/Pentax lenses to compute the accuracy of the distance measurements. These 
cameras provide images with a resolution of 640 x 480 pixels. They are mounted on separate 
10mm aluminium plates which can be adjusted in yaw, pitch and roll angle. The baseline 
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length of the camera setup is 20 cm. The lens aperture is set to 5.6, the focus to infinity. The 
lens of the right camera has a focal length of 8mm. 
To save computation time during operation the stereo images are not rectified in software. 
Instead we rely on a careful manual adjustment of the camera orientation. By changing the 
zoom of the lens of the left camera, the image sizes are brought into accordance with pixel 
accuracy. Because the stereo algorithms we use belong to the category of scanline matching, 
the roll and pitch angles of the cameras are adjusted in a way that the line correspondence 
between the left and the right image is maximised. We obtain an error of less than 1/100 
pixels for the roll angle and less than 1 pixel for the pitch angle. For reasons of simplicity, 
stereo systems are often built with parallel optical axes. But for a working distance of 1.5m-
4m that was chosen with regard to a later data fusion with the PMD camera, the images had 
a common field of view too small for stereo analysis. Therefore, the optical axes are directed 
towards each other, so that both camera images centre an object at a distance of 4m. 
Assuming a pinhole camera model, we can compute the distance z of a point in 3D-space by 
the well-known formula 

flxfrx

b
z

−
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where f denotes the focal length of both cameras and xr and xl denote the horizontal 
coordinate of the corresponding position in the right and the left camera image. The variable 
b denotes the length of the baseline. For the proposed stereo setup the formula changes to 
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Here, α and β denote the deviation of the yaw angles of the optical axes from a parallel 
setup. The values f1 and f2 are used because the focal length is not necessarily the same for 
both cameras. The variable u denotes the size of one pixel on the CCD-sensor. It is given by 
the Sony ICX098BQ data sheet as 5.6μm/pixel. 

B 0.0024691
α 0.3045662
β 0.3041429
F1 0.7583599
F2 0.7580368

Table 2. Camera parameters obtained by the genetic algorithm 

To find the parameters b, α, β, f1 and f2, a series of sample images of a flat, highly textured 
test surface is taken at known distances between 1.6m and 4m. For the stereo analysis we 
use the “Winner Takes It All” method with the SSD similarity measure based on the 
implementation by Scharstein et al. (2001). The resulting pixel accurate disparity values (xr -
xl) are averaged over the test surface. Then a genetic algorithm was used to find a good 
parameter set that minimises the integrated squared error between the distance values 
obtained by the formula above and the measured distance. A standard deviation of 0.0077  
was achieved for the distance values (in meter), when the algorithm was stopped after a 
sufficient number of cycles. The resulting parameter values are given by table 2. Averaging 
the disparity values in practice results in the loss of the absolute image position. For every 
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averaged disparity value the absolute coordinates xr and xl can be computed by adding an 
arbitrary offset to the disparity, keeping in mind that the disparity is valid for a larger image 
region. Some optimisation methods do not take this into account and thus find parameter 
sets with a significantly lower standard deviation, but then the distance values are only 
plausible for the chosen offset. 

3. PMD 

The advent of the photonic mixer device (PMD) leads to new possibilities in real-time depth 
measurement. Compared to the use of stereo correspondence analysis, laser scanning or 
other depth information yielding technology, PMD-cameras have the advantage of 
recording a scene providing intensity images and depth images at once. No further time 
consuming computation needs to be done. PMD cameras integrate the sensor hardware plus 
the needed software for gathering the images in one device. Figure 9 shows a PMD camera. 

Figure 9. Picture of a PMD camera 

3.1 General Operation 

The principle of a PMD camera will be briefly described. The camera emits an amplitude 
modulated light signal, which is reflected back onto the camera sensor array by the surface. 
The sensor is coupled with the modulation emitter and because of that capable of separating 
the electrons, which are generated by the reflected photons according to their distance. This 
process of comparing the optical signal with the electrical reference signal of the emitter is 
responsible for gathering three-dimensional information of the scene. 
The scheme of depth measuring with PMD sensors is shown in Figure 10. The modulation 
source sends amplitude modulated light (usually at wavelengths of about 800nm) to the 
object surfaces. The modulation frequency is set to 20MHz, so that a full oscillation of the 
signal has a length of 15m. This also limits the band of unambiguously yielding depth 
information to 7.5m (half the oscillation length). Hence beyond 7.5m the camera yields false 
depth information and should only be used at ranges below that limit. 
There are two light penetrable photo gates on the surface of the semiconductor elements, 
which are set to a voltage equivalent to the light modulation. The incoming photons release 
electrons in the underlying p-layer of the photo gate. Due to the voltage the semiconductor 
is set to, a potential gap is induced. This deflects the electrons to one of the reading diodes. 
Changing the polarity of the voltage the electrons are deflected to the other reading diode. 
That way we get two capacitors collecting electrons. Unmodulated background light is 
distributed equally to both capacitors thus eliminating its effect for detection. The 
modulated light on the other hand together with the push-pull voltage causes correlated 
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readout signals, which directly correspond to the phase difference. Hence the “mixing” is 
done by mixing electrons of the incoming signals with the signal of the push-pull voltage. 
The incoming signal is integrated over its amplitude and the measured result is put into its 
corresponding pot. The difference of the capacity of both pots is directly related to the phase 
difference which is linearly related to the distance of the camera to the recorded object.  

Figure 10. Scheme of a PMD measurement system 

Figure 11. Left: Sample measurements (dots) and linear approximation of the distance 
function. Right: Standard deviation of the measurements as function of the distance 

3.2 Calibration 

In our experiments we use a 1K PMD camera with ambient light suppression, which has a 
resolution of 16x64 pixels. The camera provides a measurement of the phase difference for 
every pixel and the modulation ratio which is a measure for the signal quality. The phase 
difference corresponds to the distance between the surface of an object and the camera. For 
ease of use we transform the distance data to a representation in Cartesian coordinates. To 
this end the camera geometry is approximated by central projection and the illumination by 
a point source at the centre of projection. With these approximations we obtain directly 
distance measurements in polar coordinates: The angles of the coordinates are built between 
the rays from the centre of projection through the grid cells of the sensor array. The distance 
is given by the measurements themselves. This representation is then converted to Cartesian 
coordinates. A side effect of this procedure is that a slight increase of the lateral resolution 
towards the image borders is visible now. It is caused by the large aperture angle of 70.5 
degree of the camera. To increase the accuracy of our approximations, lens distortion was  



Vision Systems: Applications 326

corrected during the coordinate transformation. Besides that, the coordinate system was 
shifted by 1.3 pixels horizontally and 2.5 pixels vertically to account for an offset between 
the optical axis and the centre of the sensor chip.  
To determine the relation between the phase difference and the distance, a flat surface with 
high reflectance was recorded for several distances. The phase difference was averaged over 
the middle 5 pixels of the array because there our approximations have the smallest error. 
The distance function z(ϕ) was then approximated by the linear function  

5143.6724022.5)( +−= ϕϕz  (14) 

with a remaining maximum error of about three percent (see Figure 11 left). Beside the 
distance function also the relation between distance and standard deviation is of major 
importance because the accuracy of the measurements depends heavily on the amount of 
light received by the camera. Since the illumination decreases quadratically with the 
distance, a second order polynomial was fitted to the data. The resulting function 

2325
10*229692.410*86723.210*734.2)(
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can be seen in Figure 11 right. Figure 12 shows a calibrated distance matrix of the test 
surface used for camera calibration as well as two nearer marker objects.  

Figure 12. Distance matrix of a flat surface at 3m distance 

Figure 13. Calibrated distance measurements for a near flat surface (1m distance) 

The remaining errors are mainly caused by model inaccuracy for small distances, by too low 
signal strength and by difficulties with the recorded scene. It turned out that for distances 
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smaller than 1.5 meters the camera model is not appropriate and the light source should 
better be modelled by a transmitter with finite area (see Figure 13). The problem of a too low 
signal occurs mainly at the borders of the sensor array and for very distant objects. But  
also the reflectance of the objects plays a role and the angle between the light source and the 
optical axis. Besides that, there is a nonlinear relation between the phase and the signal 
amplitude due to deviations from the ideal sinus wave shape. To account for these 
problems, a threshold for the modulation ratio which indicates the signal strength is 
introduced. Pixels with a modulation ratio below 30 percent are ignored. This procedure 
ensures that the measurements are in good accordance to function 15.  
Beside the reflectance of the recorded objects also their geometry can cause inaccuracies. If 
the border of an object is mapped to one sensor element, the sensor receives a mixed signal 
from the object in the front and the background. Then the recorded signal is a linear 
combination of two sinus waves which are weighted by the reflectance and distance of both 
objects. It is also possible that the signal is composed of more sinus waves if there are more 
objects occluding each other. For these sensor elements the true distance cannot be 
computed. A reasonable assumption then is that the real distance is somewhere between the 
neighbouring distances. A simple way of handling this is to introduce a minimum and a 
maximum depth map. The minimum depth map is result of a 3x3 minimum operator on the 
distance matrix, the maximum map is the result of an analogue 3x3 maximum operator. This 
is a fast method and accounts for the distance dependency of the error. 

3.3 Experimental Results 

We present in this section some results from experiments that were conducted to find out 
more about the real world behaviour of the PMD camera. The goal of the experiments was 
to gain a calibrating function for any pixel yielding a mapping from a measured value to a 
standardised value. First we tried to do the calibration process in front of a white wall, but 
later a board was taken instead of the wall. The reason for that will be addressed later in this 
section. 

Figure 14. Phase differences of the “wall-scene” and the the “board-scene” (green line) 

The camera was placed in front of the wall at distances of 1m to 6m with steps of 1m, which 
is in the range of 7.5m (see section 4.1). Each time a full measurement was taken by the 
camera. For all the experiments a tape measure was used instead of the internal alignment 
function of the camera to measure exactly the distance of the camera to the wall. To 
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suppress the effect of noise 2500 measurements were taken and every pixel was integrated 
over a 5x5 area at each distance step.   
Up to a distance of 3m the phase difference values show expected linear behaviour. But at 
distances beyond 3m the values start decreasing again (see Figure 14). This might be due to 
the fact that the surface of the wall is too smooth so that the light is not reflected in a diffuse 
manner. Hence the modulated light might not find its way back to the PMD sensor. Further 
tests showed that this effect is almost independent to the exposure time of the camera.  
As an alternative we chose a board with fine but coarse surface resulting in a better diffuse 
light reflection. With this, the camera showed the expected behaviour. The phase difference 
values are linearly increasing even beyond the point of 3m (green line). It has to be said that 
the calibration process could not measure distances of 5m and 6m, because above 4m the 
board was not big enough to cover the entire image plane of the camera. 

Figure 15. Standard deviations of measurements 

We also compared the standard deviations of measurements. The results are presented in 
Figure 15. This clearly shows the influence of noise at higher distances. The higher noise 
ratio leads to the increase of the standard deviation. 

Figure 17. Modulation image of the edge scene 

Beside the calibration process we used the camera trying to measure the depth of various 
scenes. One of the most interesting scenes is the “edge-scene” presented in Figure 16 a) and 
b). The goal of this experiment is to find out if the camera produces reliable results on object 
edges. The distance of the wall on the left is 150cm, the distance of the right wall is 80cm. 
For the scene in Figure 16 a) the depth measurement of the camera is quite accurate with 
158cm for the far and 77cm for the near wall differing only 3%-5% from the exact depth 
values. Moving the camera slightly to the left (as shown in Figure 16 b) in contrast yields 
unreliable results. The camera looks on the edge at a very beaked angle filling almost a two 
pixel column. The modulation picture (Figure 17) shows that the degree of modulation 
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decreases rapidly in the border area of the two walls not allowing any reliable 
measurements. The reason is the flat angle transporting the light away from the camera 
instead of reflecting it right back to the sensors. Hence for reliable results one has to make 
sure the camera is aligned orthogonally towards flat objects. The phase difference picture for 
Figure 16 a) is presented in fig 18.  

Figure 16. Edge scene – a) camera looking at edge of the wall orthogonally – b) camera 
looking at edge of the wall at a beaked angle 

Figure 18. Phase differences for the “wall-scene” using a 3D-view 

4. Fusion of PMD and Stereo Data 

In comparing the stereo measurements and the results of the PMD camera, the stereo system 
has the advantage of a high precision with regard to the distance measurements as well as 
the lateral resolution. Unfortunately, the results depend heavily on the image contents and 
can be very unstable for ambiguous scenes. The PMD-camera on the other hand provides 
stable results independently of the surface texture. Here, the coarse resolution of the sensor 
is unfavourable. Also, the accuracy of the depth measurements is inferior to the results of 
the stereo camera. Therefore, we made experiments to fuse the results of both techniques in 
order to obtain depth measurements both robust and precise. 
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4.1 Fusion Mechanism 

Our fusion method is based on the intersection of confidence intervals for the results of both 
camera types. A schematic of the fusion algorithm is given in Figure 19. The starting point 
for the computation of the confidence intervals are the depth maps of the camera systems. 
The depth maps consist of the image coordinates together with the corresponding depth 
values. Since the camera geometry is known for both systems from the calibration step, the 
depth values are stored as points in Cartesian coordinates with a metric coordinate system 
centred at the camera. During camera calibration also the standard deviation of the depth 
measurements is determined. For the stereo camera the confidence intervals are computed 
from a depth map by adding, respectively subtracting, twice the standard deviation of the 
depth values. This corresponds to a 95 percent interval around the mean of a normal 
distribution. The result is a minimum and a maximum depth map, respectively. For missing 
depth values, i.e. values recognised as unstable, a large depth interval of 10m is set.  

Figure 19. Fusion of the distance data 

Figure 20. Intersecting the depth intervals of the stereo and the PMD camera 

For the PMD-camera the minimum and maximum depth maps are computed by taking the 
minimum and maximum value of a 3x3 environment around every point in the depth 
image. This is because for occluding edges a mixed signal of the nearer and farther object 
surface is received. Then the depth maps are corrected by the measurement error. To 
compensate for different aperture angles of the camera systems and different lateral 
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resolutions the depth map of the PMD camera is scaled by appropriate factors in vertical 
and horizontal direction. 
The depth maps now form arrays which give a depth interval for every x- and y-coordinate. 
Data fusion is then done by intersecting the intervals of the PMD-camera with the intervals 
of the stereo camera. Figure 20 illustrates three different cases. The first case is that the depth 
intervals partially overlap. The area marked as ‘final depth’ is the intersection of the two 
depth intervals. The second case shown is that one depth interval completely covers the 
other one. Here, both sensors deliver the same depth value, but with different measurement 
accuracy. The third case is that there is no overlap. In that case one sensor or both deliver 
wrong values. Without taking further assumptions, nothing more can be said here about the 
true depth value, so the final value is marked as missing. 

4.2 Experimental Results 

Figure 21 shows a scheme of the experimental setup and the recorded scene. The 
experiments were conducted in a corridor of the university. The only changes to the original 
scene are the person we asked to stand in the corridor and the low carton placed in the 
foreground. In particular, we did not facilitate the depth recognition by e.g. hanging up 
highly textured  
posters. The environment can thus be considered as a natural indoor scene (for office 
buildings). The distance between the cameras and the objects of the scene was 3m to 4m. The 
stereo camera was placed behind the PMD camera because of the smaller aperture angle of 
23 degree compared to the 70.5 degree of the PMD camera. It was also placed 30cm higher to 
avoid the PMD camera of being visible in the stereo images. 
Figure 22 shows a pair of images from the stereo camera. These images are problematic for 
stereo analysis in many ways. First, there are big homogeneous regions, primarily the white 
walls and the white column. Scanline stereo or block matching fails in these regions due to 
the lack of characteristic image features. Secondly, the shirt of the person shows a repetitive 
pattern causing multiple solutions to the correspondence problem. In the remaining parts of 
the image stereo analysis is affected by occlusion. This concerns mainly the ceiling and the 
environment around the person. Figure 23 shows the resulting disparity and depth maps. 
Since most parts of the images lead to unstable results, a sobel operator was applied to the 
images to find areas where stable results can be expected. Disparity values in unstable 
regions are discarded. In the given depth map these areas are marked black. They are 
replaced by the mentioned 10m interval before fusion with the PMD camera. 

Figure 21. Left: Top view of the experimental setup. Right: Side view of the experimental 
setup 
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Figure 22. Left and right image of the stereo camera 

Figure 23. Left: Disparity map. Right: Resulting depth map (in image coordinates) 

Figure 24. Size of the overlapping depth intervals (left) and average depth (right)

The results of the sensor fusion can be seen in Figure 24. The left picture shows the size of 
the overlapping depth intervals, the right image shows the mean depth. The coarse block 
structure results from the low resolution of the PMD camera. Coordinates without 
overlapping depth intervals are marked as white. The bright blocks in the left figure indicate  
big depth intervals around the person, at the edges of the column and around the box. This 
inaccuracy results from depth discontinuities because there the PMD camera receives a 
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signal both from the far and the near surface. By contrast, the stereo camera is quite accurate 
for these positions and delivers in general the distance to the nearer object. Although the 
depth map from the stereo analysis is relatively sparse, the result after sensor fusion is 
dense. Missing results from stereo are replaced by values from the PMD camera because the 
stereo system provides sufficient large depth intervals when a result is unknown. The few 
missing values in the fused depth map occur when both systems report a high accuracy for 
their results, although one of the depth values or the accuracy itself is wrong. Although the 
fusion mechanism itself is comparatively straight forward, it seems to preserve the 
advantages of both 3D sensors while avoiding their disadvantages 

6. Conclusion  

Common state of the art mechanisms for the measurement of the surrounding environment 
in real time usually pose a trade off between high speed, robustness and accuracy. With 
applications for mobile robots in mind, this work focuses on the faster methods stereo 
analysis and PMD camera. Our research aims at the computation of robust and dense depth 
maps in real time. 
First, the performance of three standard stereo algorithms is examined with regard to two 
different measurements of similarity. The subsequent optimisation of the standard methods 
by using modern SIMD instructions and programming techniques like e.g. recursive 
subdivision leads to an increase of speed by a factor of four. As a result, for the Winner-
Takes-It-All algorithm we achieve a computation time of 250ms (plus 230ms for building the 
cost matrix), which can be considered real time. The accuracy of our stereo setup is 
determined experimentally and a scene reconstructed from stereo data is shown. 
To improve robustness and speed the image derivative is evaluated. In order to deal with 
poorly structured environments experiments with an adaptive block size are conducted. The 
resulting disparity maps are more dense but the resulting block sizes for homogeneous 
regions slow down the correspondence analysis. Hence, this approach is not suitable for real 
time. A fast post processing step dealing with a disparity histogram is introduced to discard 
wrong matches. The subpixel disparity is computed as a measure of plausibility. 
As a comparatively new technique the PMD camera is used for distance measurement. The 
PMD camera provides directly the depth information for every pixel without the intensive 
computation that characterises stereo analysis. The camera was calibrated with an accuracy 
of 5 percent for distances over 1.5m. For smaller distances a more complex model than a 
pinhole camera with a point light source is needed. We observe that the measurement error 
increases quadratically with the distance, which is an effect of the reduced amount of light 
received from distant surfaces. Other inaccuracies result from the reflectance properties of 
the recorded surfaces or extreme geometric arrangements of the scene. A big advantage of 
the PMD camera is that it does not rely on the texture of a surface or the visibility of objects 
in a second camera like a stereo camera. With an (adjustable) integration time of 80ms per 
image it is also much faster. On the other hand, the stereo camera has a higher image 
resolution as well as higher depth accuracy. Especially the behaviour on and near edges is 
better. We thus made experiments combining both methods and they turn out to 
compensate the disadvantages of each other very well. As a result, we obtain robust and 
dense depth information in real time. 
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1. Introduction 

To navigate successfully, a mobile robot must be able to estimate the spatial relationships of 
the objects of interest accurately. A SLAM (Simultaneous Localization and Mapping) system 
employs its sensor data to build incrementally a map of an unknown environment and to 
localize itself in the map simultaneously. Thanks to recent advances in computer vision and 
cheaper cameras, vision sensors have become popular to solve SLAM problems (Bailey, 
2003; Costa et al., 2004; Davison et al., 2004; Goncavles et al., 2005;  Jensfelt et al., 2006; 
Mouragnon et al., 2006). The proposed bearing-only SLAM system requires only a single 
camera which is simple and affordable for the navigation of domestic robots such as 
autonomous lawn-mowers and vacuum cleaners.  
Solutions to SLAM problems when the mobile robot is equipped with a sensor that provides 
both range and bearing measurements to landmarks are well developed (Leonard & 
Durrant-Whyte, 1991; Zunino & Christensen, 2001; Spero, 2005; Bailey & Durrant-Whyte, 
2006). With a single camera, landmark bearings can be derived relatively easily from a 
grabbed image, however it is much more difficult to obtain accurate range estimates. Due to 
the low confidence in range estimates from vision data, it is desirable to solve SLAM 
problems with bearing only measurements.  
One of the fundamental tasks of a SLAM system is the estimation of the landmark positions 
in an unknown environment.  This task is called Landmark Initialization. A typical bearing-
only SLAM system requires multiple observations for landmark initialization through 
triangulation. With only one observation, a stereo vision can provide range measurements 
because its multiple cameras grab images from slightly different viewpoints. However the 
reliable vision range in a stereo vision is limited due to the distance between the two 
cameras. Several observations at different locations are required to provide a robust range 
estimate.
Structure From Motion (SFM) is a process to construct the map of an environment with the 
video input from a moving camera. SFM allows a single camera to grab images at some 
vantage points for landmark initialization, such as a sufficient baseline and a straight 
movement. The requirement of SFM is well satisfied with a mobile robot, some recent works 
had utilized SFM to bearing-only SLAM (Goncavles et al., 2005; Jensfelt et al., 2006). Our 
method to bearing-only SLAM is inspired from the techniques used in both stereo vision 
and SFM. 
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Existing approaches to bearing-only SLAM require the readings from an odometer to 
estimate the robot locations prior to landmark initialization. It can be argued that such 
approaches are not strictly bearing-only SLAM as they rely on odometric information. This 
chapter presents a new 2-dimensional bearing-only SLAM system that relies only on the 
bearing measurements from a single camera. Our proposed system does not require any 
other sensors like range sensors or wheel encoders. The trade-off is that it requires the robot 
to be able to move in a straight line for a short while to initialize the landmarks. Once the 
landmark positions are estimated, localization becomes easy. The induced map created by 
our method is only determined up to a scale factor as only bearing information is used (no 
range or odometry information). All the object coordinates in the map multiplied by a scale 
factor would not change the bearing values. 
The structure of this chapter is as follows. First, we introduce a direct localization method 
using only the bearings extracted from two panoramic views along a linear trajectory. We 
explain how to induce a Cartesian coordinate system with only two distinguishable 
landmarks. The method is then extended to landmark initialization with more landmarks in 
the environment.
In general, vision sensors are noisy. Dealing with sensory noise is essential. Two different 
methods are presented to compute the spatial uncertainty of the objects:  
1. A geometric method which computes the uncertainty region of each landmark as the 

intersection of two vision cones rooted at the observation points. 
2. A probabilistic method which computes the PDFs (Probability Density Functions) of the 

landmark positions. Formulas are derived for computing the PDFs when an initial 
observation is made.  

The proposed SLAM system requires only a single camera, an interesting setup for domestic 
robots due to its low cost. It can be fitted to a wheeled robot as well as a legged robot. 

2. Related work 

The term SLAM was first introduced by Leonard and Durrant-Whyte (1991), it refers to 
Simultaneous Localization and Mapping.  SLAM is one of the fundamental tasks in the 
navigation of an autonomous mobile robot. In robotic navigation, a map is a representation 
of the spatial relationship between the objects of interest in the environment. A map usually 
contains the positions of certain objects of interest, such as landmarks and obstacles. The 
process of a robot to determine its position in a map is called localization. GPS (Global 
Positioning System) is a popular localization system, in which the map is given for 
navigation. GPS is well suited for vehicles to navigate in a large scale outdoors environment, 
for instance, to navigate from city to city. For a domestic robot, however, a GPS is not 
accurate enough and does not work properly indoors and in some built-up areas. Further, 
the map of a particular environment may not be always available. A domestic robot cannot 
localize itself without a map. A SLAM system needs to build incrementally a map while it 
explores the environment and to determine its location in the map simultaneously.  
For localization the robot needs to know where the landmarks are, whereas to estimate the 
landmark positions the robot needs to know its own position with respect to the map. The 
problem of SLAM is considered as a “chicken-and-egg” problem (Siegwart & Nourbaksh, 
2004). To predict the position of the robot, conventional SLAM systems rely on odometry. 
Unfortunately, the accumulation of odometric errors (due mainly to wheel slippage) makes 
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the accuracy of the position estimates based only on odometry deteriorate rapidly. Updating 
the estimates with other sensory input is needed if the robot navigates for a long time.  
Solutions to SLAM can be found if both range and bearing measurements to landmarks are 
obtained through sensors (Leonard & Durrant-Whyte, 1991; Zunino & Christensen, 2001; 
Spero, 2005; Bailey & Durrant-Whyte, 2006). Such a sensor reading refers to a Full 
Observation. A full observation can be achieved by either a single sensor (i.e., a laser range 
finder) or a combination of two sensors (i.e., a sonar senor and a camera). Range and bearing 
measurements constitute a full state of the environment. The sensors which observe the full 
state of the environment (i.e., both range and bearing) are called range-bearing sensors. A full 
observation is sufficient to form an estimate, such as an uncertainty region, of a landmark 
position. A typical uncertainty region is a Gaussian distribution over the possible positions 
of a landmark. Updating an estimate can be achieved by fusing the estimates from the 
subsequent observations. However, a range-bearing sensor is too expensive for a domestic 
robot. Solving the SLAM problems with a cheaper sensor is desirable. 
A sensor reading with either range-only or bearing-only measurement to a landmark is 
called a Partial Observation. A partial observation is insufficient to completely determine a 
landmark position. A partial observation generates only a non-Gaussian distribution over an 
unbounded region for the landmark position (Bailey & Durrant-Whyte, 2006). Multiple 
observations from several vantage points are required to estimate the landmark position. A 
sensor reading obtained from a single camera constitutes only a partial observation because 
it provides bearing measurements but does not provide accurate range measurements. In 
general, a vision sensor is relatively cheaper than a range-bearing sensor. We wish to solve 
SLAM problems with bearing-only measurements. Next section reviews related work on 
vision based navigation for bearing-only SLAM. 

2.1 Vision based navigation 

Vision based navigation for a mobile robot had been investigated since early nineties of last 
century. Levitt and Lawton (1990) developed a Qualitative Navigator based on vision 
sensors. This navigator was able to explore the environment and to determine the relative 
positions of all the objects of interest. In general, an image contains very rich information for 
mapping the corresponding environment. A certain feature can be recognized through its 
specific color, shape and size. The frame rate up to 30 Hz from a video camera also enhances 
to SLAM, in particular to solve the data association problem.  
Landmark bearings can be derived from a panoramic image taken by an omni-directional 
vision sensor (for example, a single camera aiming at a catadioptric mirror). A panoramic 
image offers a 0360  view of the environment. Because of the robustness of bearing estimates 
and the complete view of the environment, previous works have utilized omni-directional 
vision sensors in robotic navigation (Rizzi & Cassinis, 2001; Usher et al., 2003; Menegatti et 
al., 2004; Huang et al., 2005b). 
Stereo vision is another option used in robotic navigation. In addition to the bearing 
information, a stereo vision sensor can also measure the depth to a landmark (Murray & 
Jennings, 1998; Se et al., 2002; Sabe et al., 2004). A typical stereo vision sensor consists of two 
cameras, also known as a Binocular Vision. The disparity of the images taken from two 
slightly different viewpoints determines the landmark's range through triangulation. A 
Baseline in stereo vision is a line segment connecting the centres of two cameras’ lens. Some 
stereo vision systems consist of three cameras, they are called Trinocular Visions. Common 
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configuration of a trinocular vision is to put three cameras on a right angle polygonal line. A 
trinocular vision can achieve better results than a binocular vision because the second pair 
of cameras can resolve situations that are ambiguous to the first pair of cameras (Se et al., 
2002; Wooden, 2006). 
The length of the baseline is essential in stereo vision, because it affects the precision of 
depth estimation and the exterior design of robotic hardware. QRIO (Sabe et al., 2004), a 
humanoid robot having a 5cm baseline in its binocular vision. The error of the depth 
measurement at a distance of 1.5m is over 80mm. The depth estimates of objects with the 
distances of 2m or more are omitted. LAGR (Wooden, 2006), an outdoor robot equipped 
with a trinocular vision of Point Grey Bumblebee. A maximum vision range of 6m was 
reported with a baseline of 12cm. To maximize the vision range of a stereo vision sensor, a 
longer baseline is required. Based on the mobility of a mobile robot, it is possible to extend 
the distance of any two viewpoints of a single camera (called a Monocular Vision). If a robot 
can move straight, the estimation of a landmark range from a monocular vision will be the 
same as the estimation in a stereo vision. Such approach was first proposed by Huang et al. 
(2005a). In this paper, a localization method with two observed bearings along a linear 
trajectory was presented. The method is particularly useful and accurate if the robot can 
move straight, i.e., the robot’s yaw is toward to a specific landmark.  
In computer vision, Structure From Motion (SFM) refers to the process of building a 3D map 
of a static environment from the video input from a moving camera.  This is very similar to 
stereo vision where a 3D map is built from two simultaneous images of the same landmark. 
In both cases, the same landmark is taken into multiple images and the disparities of images 
are used to compute the landmark location. In stereo vision, the images are taken at 
different viewpoints simultaneously. In SFM, due to the robot's motion, the images are 
taken at different viewpoints at different time steps. Visual odometry (Nister et al., 2004) 
employs SFM to estimate the motion of a stereo head or a single moving camera based on 
video data. The front end of this system is a feature tracker. Point features are matched 
between pairs of frames and linked into image trajectories at video rate. SFM presents 
significant advantages compared with a stereo vision due to the low cost of a monocular 
vision and the flexible baseline. However, SFM can build a map with respect to a static 
environment only because of the images are obtained at different time steps. 
Goncavles et al. (2005) presented a framework to bearing-only SLAM based on SFM from 
three observations. They utilized a wall corner as the landmark for guiding the robot to 
move straight. Three images were taken while the robot was moving toward the wall 
corner. Each image was taken when the robot had moved 20cm approximately. A similar 
work (Jensfelt et al., 2006) was using N  images for landmark initialization, here N is a 
sufficient number to obtain an accurate estimation. To ensure a proper triangulation, the 
images were discarded if the robot had not moved more than 3cm (i.e., baseline under 3cm) 
or turned more than 1 degree (i.e., not a straight movement). Both of the approaches solve 
the bearing-only SLAM problem using a monocular vision. However, they require an 
odometer to determine robot’s motion. Our method to bearing-only SLAM is similar to SFM 
with a monocular vision, but does not rely on odometric information. 
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2.2 Dealing with uncertainty 

In general, vision sensors are noisy. Dealing with sensory noise is essential in robotic 
navigation. The uncertainty of an object location can be represented with a PDF (Probability 
Density Function). When a robot is initially placed in an unknown environment without any 
prior information, the PDF of the robot position is uniform over the whole environment. 
Once the robot starts to sense the environment, information gathered through the sensors is 
used to update the PDF. Smith and Cheeseman (1986) estimated the object locations by 
linking a series of observations through an approximate transformation. The transformation 
includes compounding and merging the uncertain spatial relationships from sensor 
readings. Stroupe et al. (2000) showed how to fuse a sequence of PDFs of 2-dimensional 
Gaussians estimated from noisy sensor readings. 
Robustness to sensory noise can be achieved with probabilistic methods such as Extended
Kalman Filters (EKF) or Particle Filters (PF). The PF follows the Sampling Importance 
Resampling (SIR) algorithm, also known as the Monte Carlo Localization (MCL) algorithm in 
robotics (Fox et al., 1999). In PF, the number of particles is an important factor to the 
computing complexity. Montemerlo et al.  (2003) proposed an efficient algorithm called 
FastSLAM based on PF with a minimized number of particles. Davison (2003) used a 
separate PF to estimate the distance from the observation point to the landmark with a 
single camera. The estimated distance is not correlated with other observations due to the 
limitation of the field of view. The follow-up work (Davison et al., 2004) improved the 
SLAM results by applying a wide-angle camera.  In (Menegatti et al., 2004), omnidirectional 
images were employed to the image-based localization combining with MCL technique. Sim 
et al. (2005) solved SLAM problem with PF using a stereo vision sensor.  
EKF is computationally efficient for positional tracking. However, an initial estimate of 
Gaussian distribution over the landmark position is required. This estimate can be refined 
efficiently with the estimates from subsequent observations. It is important to have an initial 
estimate relatively close to the real solution. Many works have focused on the problem of 
landmark initialization. In (Bailey, 2003), previous poses of the robot were stacked in the 
memory to perform the landmark initialization. Once the landmarks were initialized, the 
batch of observations was used to refine the whole map. Costa et al. (2004) presented an 
iterative solution to the landmark initialization of bearing-only SLAM problem with 
unknown data association (i.e., all landmarks are visually identical). The authors estimated 
landmark positions through Gaussian PDFs that were refined as new observations arrived.  
Bundle adjustment is a process which adjusts iteratively the robot’s pose and the landmark 
positions in order to obtain the optimal least squares solution. Combining EKF with bundle 
adjustment ensures a robust estimate. Such an optimization is usually calculated off line due 
to expensive in computation. In  (Mouragnon et al., 2006), landmark initialization was 
carried out with a bundle adjustment in an incremental way, in the order of video frames. 
An incremental method can improve the computing efficiency compared with the usual 
hierarchical method. 
Landmark initialization based on memorizing previous measurements or iterative methods 
cause time delay for estimation. These methods belong to the delayed methods of landmark 
initialization (Sola et al., 2005). Some immediate initialization methods to bearing-only 
SLAM called undelayed methods of landmark initialization were introduced; Kwok and 
Dissanayake (2004) presented a multiple hypotheses approach to solve the problem in a 
computationally efficient manner. Each landmark was initialized in the form of multiple 
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hypotheses distributed along the direction of the bearing measurement. The validity of each 
hypothesis was then evaluated based on the Sequential Probability Ratio Test (SPRT). Sola et 
al. (2005) gave a new insight to the problem and presented a method by initializing the 
whole vision cone  (see Figure 4(a)) that characterizes the direction of the landmark. This 
cone is covered by a sequence of ellipses that represent the likelihood of the landmark. 
Undelayed method of landmark initialization is efficient to identify the directions of all 
landmarks when the first bearing measurements are made. It does not state explicitly the 
locations of the landmarks. Further observations are still required to initialize the landmark 
positions. Lemaire et al. (2005) applied an undelayed initialization method to a 3D bearing-
only SLAM. The landmark initialization is similar to the method proposed in (Kwok & 
Dissanayake, 2004) by maintaining a mixture of Gaussians. The updating process was done 
by comparing the likelihoods of subsequent observations. If the likelihood falls below a 
certain threshold then the Gaussian is removed. Once only a single Gaussian is left in the 
cone, the landmark is initialized and added into the map for EKF-SLAM. 

2.3 Our approaches 

This chapter presents two methods to compute the spatial uncertainties of the objects based 
solely on bearing measurements only: namely a geometric method and a probabilistic 
method. These methods are similar to the approach of the undelayed method of landmark 
initialization. Since the estimate based on a partial observation (known bearing but 
unknown range) is insufficient to completely determine a landmark position, a second 
observation from a vantage position is required to generate an explicit estimate.  
In the geometric method, we manipulate directly each vision cone as a polyhedron instead 
of a sequence of Gaussians. Each cone contains a landmark position. After a second 
observation in a linear trajectory, the uncertainty region (the set of possible landmark 
positions that are consistent with the first and second observations) of the landmark 
becomes the intersection of two cones rooted at the two observation points, see Figure 4(b). 
Depending on the difference of bearings, the intersection is either a quadrangle (four-side 
polygon) or an unbounded polyhedron. For each estimation, we change the bases from the 
local frame (the robot-based frame, denoted by RF ) into the global frame (the landmark-
based frame, denoted by LF ). The uncertainties of all objects are re-computed with respect to 

LF  by the change of bases. A global map with the estimated positions of all objects and their 
associated uncertainties can be gradually built while the robot explores its environment. 
In the probabilistic method, a landmark position is represented by a PDF ),( αrp  in a polar 
coordinate where r and α  are independent. Formulas are derived for computing the PDF 
of landmark position when an initial observation is made. The updating of the PDF with the 
subsequent observations can be done by direct computing from the formulas. We select a 
number of sample points in the uncertainty region (computed from the geometric method)  
by the rejection method (Leydold, 1998). These sample points are used to represent the PDF 
in RF . By changing the bases from RF to LF , the PDFs of all object positions in the global 
frame LF can also be computed. 
Without range measurement, we assume the probability density of an object location is 
constant along the range. It is a more realistic assumption than the one made by other 
existing methods (Davison, 2003; Davison et al., 2004; Kwok & Dissanayake, 2004; Sola et al., 
2005) which assume that the probability density of the object location is a Gaussian or a 
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mixture of Gaussians. Indeed, if only bearing information is given, the probability that the 
landmark is between 4 and 5 metres should be the same as the probability that the landmark 
is between 5 and 6 metres. The representation with a Gaussian or a mixture of Gaussians 
fails in this constraint. With our PDF representation, the probability that the landmark is 
between 4 and 5 metres will be the same as the probability that the landmark is between 5 
and 6 metres. 

3. A direct localization method using only the bearings extracted from two 
panoramic views along a linear trajectory  

In this section, we describe a direct method (in the sense it does not use an iterative search) 
based solely on vision for localizing a mobile robot in a 2-dimensional space. This method 
relies only on the bearings derived from two images taken along a linear trajectory. We only 
assume that the robot can visually identify landmarks and measure their bearings. This 
method does not require any other sensors (like range sensors or wheel encoders) or the 
prior knowledge of relative distances among the objects. This method can be adopted in a 
localization system which utilizes only a single camera as the sensor for navigation. Given 
its low cost, such a system is well suited for domestic robots such as autonomous lawn-
mowers and vacuum cleaners. 

3.1 Method description 

In order to describe our method we need to introduce some notation. The robot position at 
thi  observation point is denoted by iO . The position of thj  landmark is denoted by jL . The 

notation j
iβ denotes the bearing measurement at iO  with respect to jL . The line going 

through two points 
1x  and 2x  will be denoted by ),( 21 xxΓ . This section shows how to 

compute the Cartesian coordinates of landmarks and the robot positions from the bearings 
measured at 1O and 2O  relatively to 1L and

2L . We consider two right-handed coordinate 
systems, the robot-based frame denoted by RF , and the landmark-based frame denoted by 

LF . In Figure 1(a), the coordinates of 1O and 2O in RF  are respectively ]'0,0[ and ]'0,1[ .
Similarly, in LF  (see Figure 1(b)), the coordinates of 1L and

2L  are respectively ]'0,0[ and 
]'0,1[ . The frame LF  is a global frame since all the landmarks are assumed static in the 

environment. The distance |||| 21 LL −  is taken as the measurement unit for the localization 
system.  
While the robot moves in a linear trajectory, two images are taken at 1O and 2O respectively.
The landmark bearings are derived from these two images. The position jL in RF  is 

computed as the intersection of two lines ),( 1 jLOΓ  and ),( 2 jLOΓ . The equations of this two 

lines can be obtained from the bearings j
1β and j

2β , and the coordinates of 1O and 2O  in RF .
Once jL is available in RF , we can determine the affine transformation that relates the 
coordinates )(xXL  and )(xX R  of a point x  in the two coordinate systems LF  and RF . That 
is, an expression of the form bxXaxX RL += )(*)( , here a  is a matrix and b  is a vector. The 
coordinates of 1O  and 2O  in LF  are then easily derived.  
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Figure 1. From two landmark bearings observed at points 1O and 2O , the coordinates of 

1L and 2L  in RF are computed. Then a simple change of bases gives the positions of 1O and

2O in the global  frame LF

Figure 2. The estimated error e  on 2L  depends on the relative difference in bearings 

In order to determine the relative position of a landmark, this landmark should not be on 
the line ),( 21 OOΓ . For example, if 1L , 1O and 2O  are on the same line, then 

),(),( 1211 LOLO Γ∩Γ   is not a single point but a whole line. 
Experiments in simulation and on a real robot (see Section 3.2) indicate that the accuracy of 
this localization system is sensitive to the relative difference of bearings. Let e  be the 
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estimated error of landmark position. Figure 2 shows that )sin(*)sin(* 2

20 θβ edd == , here 
2

1

2

2
ββθ −= ,

0d  is the distance between 2L and )','( 22 LOΓ , and ||'|| 22 OOd −= . We have 

)sin(

)sin(* 2

2

θ
βde = . That is, e  is proportional to the landmark range d  and the inverse of the relative 

difference in bearings. Assume the landmark range is fixed and the bearings angles are 

small, the ratio d
e  will be approximately equal to 2

1

2

2

2

2

ββ

β

− . This result confirms our intuition 

that a large relative change in bearings should give a more accurate position estimate. 

3.2 Empirical Evaluation 

Our localization method was evaluated on a Khepera robot equipped with a color camera 
(176 x 255 resolution). The average error between the measured and actual bearings is about 
± 2 degrees. In this experiment, the second landmark was placed 20 centimetres apart from 
the first landmark. Four different starting points were used, and 20 trials at each point were 
conducted. The moving distance in all cases was 30 centimetres. The moving directions were 
westwards parallel to the landmarks. The results are shown in Figure 3. In this figure, 
landmarks are denoted by stars, trajectories are shown as arrows, and the estimated 
positions by our localization method are displayed as scatter points. 
The localization error, average distances between the estimated positions and the actual 
positions, at positions a, b, c, and d (in Figure 3) are respectively 0.6, 1.2, 2.2, and 2.8 
centimetres. The errors are small compared to the diameter of the robot (6 centimetres). 
Other experimental results have confirmed that the error is inversely proportional to the 
relative difference in bearings. 

Figure 3. Estimated positions of the robot determined by the proposed localization method 

When more than two landmarks are present, the localization accuracy can be further 
improved by fusing the estimated positions, giving more importance to the estimation 
returned by the pair of landmarks that has a larger relative difference in landmark bearings. 
In summary, we have introduced a novel effective approach for robot self-localization using 
only the bearings of two landmarks. This technique can be viewed as a form of stereo-vision. 
The method we propose is well suited for real-time system as it requires very little 
computation.
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When more than two landmarks exist in the environment, the robot can determine the 
relative positions of the landmarks provided some weak visibility constraints are satisfied. 
Indeed, suppose there are two pairs of landmarks },{ 21 LL  and },{ 43 LL visible from a 
segment 21OO  (notice that },{ 21 LL  and },{ 43 LL do not have to be in direct line of sight). 
Then using three different bases, the first one 0B attached to 21OO , the second one 

2,1
B attached to },{ 21 LL , and the third one 

4,3
B attached to },{ 43 LL , we can determine the 

change of basis matrices 
2,10 ,BBM  and 

4,30 ,BBM . The matrix product 
4,302,10 ,

1

, ΒΒ
−

ΒΒ MM  allows us to 
compute the positions of the pairs of landmarks },{ 21 LL  and },{ 43 LL  relatively to each 
other.
This method enables a mobile robot to localize itself with only two observed bearings of two 
landmarks. Such a localization system will be invaluable to an indoor robot as well. As the 
bearings of the sides of a door frame can play the roles of the landmarks 1L and 2L  and tell 
the robot exactly where it stands relative to the door. In next section, we employ this method 
to solve the landmark initialization problem in bearing-only SLAM. 

4. Sensitivity Analysis to Landmark Initialization of Bearing-Only SLAM  
– A geometric approach 

In this section, we propose a geometric method to solve the landmark initialization problem 
in bearing-only SLAM. The assumptions and the localization method are the same as in 
Section 3, with the exception that vision error is taken into consideration. The estimate of a 
landmark position becomes an uncertainty region instead of a single point. In particular, we 
show how the uncertainties of the measurements are affected by a change of frames. That is, 
we determine what can an observer attached to a landmark-based frame LF deduced from 
the information transmitted by an observer attached to the robot-based frame RF .

4.1 Method description 

The notations in this section are the same as in Section 3.1. The uncertainty region of jL  is 
denoted by 

jLA . Assume that the error range for the bearing is ε± . In other words, at an 

observation point iO , a landmark position jL  is contained in the vision cone which is formed 

by two rays rooted at iO . The first ray is defined by iO  and the bearing εβ +j
i ; the second 

ray is defined by iO  and bearing εβ −j
i . Figure 4(a) shows the vision cones in the robot-

based frame RF  based on the reading of the landmark bearings from 1O .
After reading the bearing measurements from both 1O and 2O , the uncertainty region 

jLA

becomes the intersection of two cones rooted at 1O and 2O  respectively. Figure 4(b) shows 
that a typical intersection is a 4-sided polygon. If the cones are almost parallel, their 
intersection can be an unbounded polyhedron. 
The spatial relationships in Figure 4(b) are expressed in RF . Since the robot is moving over 
time, the base of RF changes too. Therefore, it is necessary to change coordinate systems to 
express all positions in the global frame LF . Figure 5 illustrates the difficulty of expressing 
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the robot centred information in the global frame LF . The uncertainty on the landmarks 
prevents us from applying directly a change of bases. In next section, we will show how to 
solve this problem. 

Figure 4. (a) The vision cones rooted at 
1O  contain the landmarks. Each cone represents the 

unbounded uncertainty of the associated landmark. The diagram is drawn with respect to 
the robot-based frame RF . (b) The intersections of the vision cones form the uncertainty 
region

jLA

Figure 5. When 1
L and

2L are not certain, a simple change of bases does not induce correct 
uncertainty regions of 3

L  and 
4L
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4.2 Uncertainty and change of frames 

From the uncertainties of landmark positions estimated in the robot-based frame RF , we 
would like to derive the uncertainty regions of the observed objects with respect to the 
landmark-based frame LF . Given a point x , if )(xXR  and )(xXL  denote the coordinate 
vector of x  in frames RF and LF  respectively. 
Consider the simple case of Figure 6(a) which contains only two landmarks and two robot 
positions. Assume the robot (the observer) sees 1

L clearly from 1O and 2O , but sees  
2L with 

some noise. The uncertainty region of  1
L in RF  is reduced to a single point (no ambiguity). 

Whereas, the uncertainty region of  
2L in RF  is a polyhedron. 

Figure 6. (a) A simple case in RF , where we assume 1
L  is clearly observed without 

ambiguity, the uncertainty region of 
2L  is 

2LA . The four vertices of 
2LA  are denoted by kL2 ,

4...1=k

(b) After the change of frames, the uncertainty regions of 1O  and 2O  are denoted by 
1OA

and
2OA . We obtain kO2  from Equation (4) with respect to kL2 , 4...1=k .

The uncertainty regions of 1O and 2O with respect to LF  can be obtained by considering all 
possible hypotheses for the location of 

2L consistent with the observations. That is, we 
consider the set of possible coordinate vectors )( 2LXR of

2L in RF . For each hypothesis 

22 )( hLXR = , a standard change of bases returns the coordinates )( 1OXL  and )( 2OXL  of 
respectively 1O and 2O  in LF . Making 2h  range over the vertices of 

2LA  in Figure 6(a), 

create the polyhedra 
1OA  and 

2OA  of uncertainty regions with respect to LF  (see Figure 
6(b)).
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In the general case, when uncertainty exists for both 1L  and 
2L , to transfer the information 

from RF to LF , we consider simultaneously all the possible locations of 1L and
2L  consistent 

with the observations. We hypothesize,  

11 )( hLX R = , and 
22 )( hLXR =   (1) 

Let
21 ,hhτ  be the affine transformation function for changing frames from RF to LF . That is, 

]'0,0[))(()( 1,1 21

== LXLX RhhL τ  (2) 

]'0,1[))(()(
2,2 21

== LXLX RhhL τ  (3) 

The above constraints completely characterize
21 ,hhτ . For any point x , the coordinates 

transfer between the two frames is done with Equation (4). 

))(()(
21 , xXxX RhhL τ=  (4) 

In other words, the uncertainty region 
iOA  of the robot position in LF  is 

))(()(
21

2211

,

,

iRhh
AhAh

OL OXAX
LL

i
τ

∈∈

=  (5) 

Figure 7. The uncertainty regions in LF  are derived from the uncertainty regions in RF  (see 
Figure 5). The centroids of the uncertainty regions are used to represent the estimated 
positions of different objects. The areas of the polyhedra quantify how uncertain the 
estimates are 

The uncertainty regions 
jLA  for 3L  and 

4L  in LF  are computed similarly, 
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))(()(
21

2211

,

,
j

LL

j LRhh
AhAh

LL AXAX τ
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=  (6) 

The computation in this example, we take the four vertices (the extreme points) kL1  and kL2

( 4...1=k ) from 
1LA  and 

2LA . Figure 7 shows the estimated uncertainties of 1O , 2O  and 

3L ,
4L  in LF . The polyhedron )(

iOL AX  approximates the set of all consistent points for iO
and the polyhedron )(

jLL AX  approximates the set of all consistent points for jL . Although 

the uncertainty region )(
jLL AX  is not a polyhedron, in practice it can be approximated by a 

polyhedron. We have tested the proposed method both in simulation and on a real robot. 
These results are presented in next section. 

4.3 Simulation 

We tested the proposed method in simulation in an environment with four landmarks (at 
unknown positions to the localization system). The robot moves in a polygonal line around 
the centre with some randomness. Since we focus on landmark initialization, Figure 8 shows 
only the estimated positions of the landmarks.
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Figure 8. The uncertainty regions 
3LA and

4LA gradually shrink as the number of 
observations increases. The arrows represent the robot movements 

Two landmarks are arbitrarily selected as 1L and
2L . With the change of frames from RF to 

LF , the uncertainty regions 
3LA and

4LA are computed. When another pair of observations is 
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available after the robot has moved again, new 
3LA and

4LA  are obtained in the same 
manner. The estimated positions from all movements are unifiable since they are with 
respect to the same frame LF . Figure 8 shows how the uncertainty regions are refined after 
several movements. The polyhedra 

3LA and
4LA shrink gradually. A global map with the 

estimated positions and the corresponding uncertainties of all landmarks can be 
incrementally built. 

4.4 Evaluation on a Real Robot 

Our method was evaluated using a Khepera robot. The Khepera robot has a 6 centimetre 
diameter and is equipped with a color camera (176 x 255 resolution). A kheperaSot robot 
soccer playing field, 105 x 68 square centimetres, was used as the experimental arena (see 
Figure 15). There were four artificial landmarks in the playing field. Only one landmark was 
distinct from the others. The second landmark was placed 20 centimetres apart from the first 
landmark. 
During the experiments, the robot moved in a polygonal line. Two panoramic images were 
taken in each straight motion. Landmark bearings were extracted from the panoramic 
images using a color thresholding technique. Bearings from each pair of observations were 
used to estimate the landmark positions. The vision error ε  is limited to ±2 degrees.  
Figure 9(a) shows the estimated uncertainties of landmark positions after 10 pairs of 
observations. The actual landmark positions are denoted by stars, the estimated landmark 
positions are shown as circles, and the areas of the polyhedra represent the uncertainties. 

Figure 9. (a) Estimated landmark positions after 10 pairs of observations. (b) The 
uncertainties of the third and fourth landmarks 

The uncertainties of 3L  and 
4L decrease rapidly in the first few observations and does not 

change much after the third observation as shown in the top chart of Figure 9(b). The bottom 
chart of Figure 9(b) displays the estimated errors of 3L  and 

4L are 2 centimetres and 3 
centimetres respectively. The measurement unit in this chart equals to 20 centimetres.  
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We carried out another experiment to study the sensitivity of vision error ε . The top chart 
of Figure 10 shows the relationship between ε and the uncertainties of 3L . The amount of 
the vision error ε  was varied from 2 to 7 degrees. The uncertainties are proportional to ε
in a linear manner. The bottom chart of Figure 10 shows that the estimated error might not 
decrease monotonically. This is because we assign the centroid of the uncertainty region as 
the estimated landmark position. 
In this section, we introduced a method for analyzing how uncertainty propagates when 
information is transferred from one observer attached to a robot-based frame to an observer 
attached to a landmark-based frame. The accuracy of this method was demonstrated both in 
simulation and on a real robot. In next section we will employ a probabilistic method to 
compute the uncertainties of object positions. 

Figure 10. Uncertainties and estimated errors at different amounts of vision error ε in
degrees

5. Sensitivity Analysis to Landmark Initialization of Bearing-Only SLAM  
– A probabilistic approach 

In this Section, we describe a probabilistic method to solve the landmark initialization 
problem in bearing-only SLAM. The assumptions in this method are the same as Section 3. 
We characterize ),( αrp  the PDF of landmark position expressed in polar coordinates when 
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r  is independent on α . Formulas are derived for computing the PDF (Probability Density 
Function) when an initial observation is made. The updating of the PDF when further 
observations arrive is explained in Section 5.2.A. 

5.1 Method description 

Let ),( αrp  be the PDF of the landmark position in polar coordinates when only one 
observation has been made. We characterize  ),( αrp  when r  and α  are independent. Let  
β  denote the measured landmark bearing. Assume that the error range for the bearing is 

ε± . The landmark position is contained in the vision cone which is formed by two rays 
rooted at the observation point with respect to two bearings εβ − and εβ +  (see Figure 11). 

Figure 11. The vision cone is rooted at the observation point. The surface of the hashed area 
is approximately  αddrr  for small  αd  and dr

The surface of the hashed area in Figure 11 for small dr  and αd  can be computed as 
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In Equation (7), maxR and
minR  are the bounds of the vision range interval. We define )(RF  as 

the probability of the landmark being in the area ]},[],,[|),{( min εβεβαα +−∈∈ RRrr ,
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We define ),( ΔΨ R  as the probability of the landmark being in the dotted area in Figure 11. 
Since )()(),( RFRFR −Δ+=ΔΨ , we have 

+

−

Δ+
=ΔΨ
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ddrrrpR ),(),(  (9) 

If the range  r  and the angle  α  are independent, then ),( ΔΨ R  is constant with respect 

to R . That is, 0
),( =

∂
ΔΨ∂

R
R . From Equation (9), we derive 
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Because of the independence of α  and r , ),( αrp can be factored as  

)()(),( αα grfrp =  (11) 

Without loss of generality, we impose that =1)( αα dg . After factoring, Equation (8) 
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From Equations (10) and (12), we deduce that RRfRRf )()()( =Δ+Δ+ . Therefore, 
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integrating both sides, we obtain 
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If we use a Gaussian function for )(αg  with mean β  and standard deviation σ , the PDF 
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),( αrp  can be re-written as Equation (14).  Figure 12 shows the PDF of ),( αrp
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Figure 12. The PDF of the landmark position following Equation (14) 

5.2 Utilization of the PDF for bearing-only SLAM

We illustrate the application of the PDF for our bearing-only SLAM system. Section 5.2-A 
describes how the PDF can be updated with a second observation. In Section 5.2-B, we 
present experimental results on a real robot. 

A. Updating the PDF with a second observation 

When a second observation is made after a linear motion, the landmark position falls in the 
uncertainty region which is the intersection of two vision cones rooted at the first and the 
second observation points 1O  and 2O . We denote with 1p  and 2p  the PDFs of the landmark 
positions computed from Equation (14) with respect to 

1O  and 2O  respectively. Let p
denote the PDF of the landmark position after fusing the sensory readings from 1O  and 2O .

From the work of Stroupe et al. (2000), we have = 2121 ppppp .
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We want to approximate p  with a Gaussian distribution q . To compute the parameters of 
q , we generate a set S  according to the PDF p  by the Rejection Method (Leydold, 1998). We 
determine the maximum probability density maxp  of p  by computing 21 pp at the 
intersection of two bearings. The sampling process selects uniformly a sample point s and a 
random number }1,0{ ∈νν . If ν<max)( psp , s  is rejected, otherwise s  is accepted and 
added to S . The sampling process is repeated until enough points are accepted. Figure 13 
shows the generated samples in the uncertainty regions of four landmarks. 
The mean x and the covariance matrix C of q  are obtained by computing the mean and the 
covariance matrix of S  as previously done by Smith & Cheeseman (1986) and Stroupe et al. 
(2000). In Figure 13, the contour plots present the PDFs of landmark positions. 
The estimated PDFs in Figure 13 are expressed in the robot-based frame RF . Since the robot 
is moving over time, its frame changes too. Therefore, it is necessary to change the 
coordinate systems to express all the estimations in the global frame LF . We use the method 
introduced in Section 4 to transfer the samples in S  from RF  to LF . After the change of 
frames, the uncertainties of 

1L  and 2L are transferred to other objects. The samples of other 
objects are taken to approximate the PDFs of the object positions in LF . Figure 14 shows the 
distribution of the samples after the change of frames. The contour plots present the PDFs of 
the object positions in the global frame LF  associated to the points ),( 21 LL .

Figure 13. The PDFs and the contour plots of four landmarks in the robot-based frame RF ; in 
this example, the uncertainty region of each landmark is a bounded polygon. The generated 
samples are distributed in the uncertainty regions 
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Figure 14. After the change of frames from RF to LF , the PDFs and the contour plots of 1O ,

2O  and 3L , 4L  are presented in the global frame LF

B. Experimental Results 

Our method was evaluated using a Khepera robot equipped with a colour camera (176 x 255 
resolution). The Khepera robot has a 6 centimetres diameter. A KheperaSot robot soccer 
playing field, 105 x 68 square centimetres, was used for the experiment arena (see Figure 15). 
There were four artificial landmarks in the playing field. The first and second landmarks 
were placed at the posts of a goal, 30 centimetres apart from each other. 
The objective of the experiment is to evaluate the accuracy of the method by estimating the 
positions of the third and the fourth landmarks. At each iteration, the robot was randomly 
placed in the field. The robot took a panoramic image and then moved in a straight line and 
captured a second panoramic image. Landmark bearings were extracted from the 
panoramic images using colour thresholding. 
A total of 40 random movements were performed in this experiment. 

minR  was set to 3 
centimetres, maxR  was set to 120 centimetres, and the vision error ε  was ± 3 degrees. Figure 
16(b) shows the errors of the estimated landmark positions. For 3L , the estimated error was 
reduced from approximately 9 centimetres at the first iteration to less than 1 centimetre at 
the last iteration. For 4L , the error was reduced from 14 centimetres to 2.77 centimetres. The 
experiment shows that the estimated error of landmark position is sensitive to the relative 
distance with respect to 1L  and 2L .
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Figure 15. Experimental setup, the landmarks are the vertical tubes 

Figure 16. (a) Diagram of the experimental setup. (b) The errors of the estimated landmark 
positions

We made another experiment to test the sensitivity of the errors of the landmark positions 
with respect to the different directions of the robot’s moving trajectories. We let the robot 
move in four different directions with respect to three landmarks. In Figure 17(a), stars 
denote the landmark positions and arrows denote the moving trajectories. The robot 
repeated 10 iterations for each trajectory. 
The errors on  3L in four trajectories after the tenth iteration were 2.12, 1.17, 1.51, and 13.99 
centimetres respectively. The error of the fourth trajectory is large because the robot moves 
along a line that is close to 3L . Therefore, the vision cones at the first and the second 
observations are nearly identical. 
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The estimation of the landmark position is more accurate when the intersection of two 
vision cones is small. This is the case of the second trajectory where the intersection is the 
smallest among all trajectories.  

Figure 17. (a) Trajectories of the robot for the experiment to study the relationship between 
moving directions and estimated errors of landmark positions. (b) The errors on 3L at each 
iteration

Although the intersecting area of 3L for the first and the third trajectories are the same, the 
intersecting areas of  

1L  and 
2L for the first trajectory are much bigger than the areas from 

the third trajectory. This is the reason why the estimated error from the third trajectory is 
smaller than the one for the first trajectory.

6. Conclusion 

In this chapter, we proposed a vision-based approach to bearing-only SLAM in a 2-
dimensional space. We assumed the environment contained several visually distinguishable 
landmarks. This approach is inspired from techniques used in stereo vision and Structure 
From Motion. Our landmark initialization method relies solely on the bearing 
measurements from a single camera. This method does not require information from an 
odometer or a range sensor.  All the object positions can be estimated in a landmark-based 
frame. The trade-off is that this method requires the robot to be able to move in a straight 
line for a short while to initialize the landmarks. The proposed method is particularly 
accurate and useful when the robot can guide itself in a straight line by visually locking on 
static objects. 
Since the method does not rely on odometry and range information, the induced map is up 
to a scale factor only. In our method, the distance |||| 21 LL −  of two landmarks is taken as 
the measurement unit of the map. The selection of  

1L  and 
2L  is critical for the accuracy of 
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the map. In Section 3.1, the mathematical derivation shows that the estimated error of a 
landmark position is proportional to the range of the landmark and the inverse of the 
relative change in landmark bearings.  Choosing 

1L  and 
2L with larger change in bearings 

produces a more accurate mapping of the environment.  
In the sensitivity analysis, we showed how the uncertainties of the objects’ positions are 
affected by a change of frames. We determine how an observer attached to a landmark-
based frame LF  can deduce the uncertainties in LF  from the uncertainties transmitted by an 
observer attached to the robot-based frame RF . Each estimate of landmark uncertainties 
requires a pair of the observations in a straight movement. The simulation in Section 4.3 
shows how the uncertainties of landmark positions are refined when the robot moves in a 
polygonal line. 
With dead reckoning, the error of the estimated robot’s location increases with time because 
of cumulated odometric errors. In our method, we set 

1O  and 
2O  (pair of observation 

points in a straight movement) at ]'0,0[  and  ]'0,1[  in RF . There is no dead reckoning error 
on

1O  and 
2O by construction.  In practice, the robot’s movement may not be perfectly 

straight.  However, the non-straight nature of the trajectory can be compensated by 
increasing the size of the confidence interval of the bearing. 
The induced map created by our method can be refined with EKF or PF algorithms. With 
EKF, the uncertainty region computed from the geometric method can be translated into a 
Gaussian PDF.  With PF, the weights of the samples can be computed with the formulas 
derived in Section 5.1.  Since the samples are drawn from the uncertainty region, the 
number of samples is minimized.   
The accuracy of our method was evaluated with simulations and experiments on a real 
robot. Experimental results demonstrate the usefulness of this approach for a bearing-only 
SLAM system. We are currently working on the unknown data association when all 
landmarks are visually identical. In future work, we will deal with the problems of object 
occlusion and non-planar environments. That is, the system will be extended from a 2-
dimensional to a 3-dimensional space. 
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1. Introduction    

In this chapter applications of image and video processing to navigation of mobile robots 
are presented. During the last years some impressive real time applications have been 
showed to the world, such as the NASA missions to explore the surface of Mars with 
autonomous vehicles; in those missions, video and image processing played an important 
role to rule the vehicle. 
Algorithms based on the processing of video or images provided by CCD sensors or video 
cameras have been used in the solution of the navigation problem of autonomous vehicles. 
In one of those approaches, a velocity field is designed in order to guide the orientation and 
motion of the autonomous vehicle. A particular approach to the solution of the navigation 
problem of an autonomous vehicle is presented here. In the first section of this introduction 
a state of the art review is presented, after it, the proposed algorithm is summarized; the 
following sections present the procedure. Finally, some experimental results are shown at 
the end of the chapter. 

1.1 Review of Navigation of Autonomous Robots using Vision Techniques. 

In the area of autonomous navigation using vision techniques, the previous works (Santos-
Victor & Sandini,1997), and (Nasisi & Carelli, 2003) are corner stones. In the first mentioned 
study, robot control techniques are explored, using both cameras on board of the robots and 
external cameras. In that work it is shown that it is possible to accomplish effective control 
actions without doing a complete processing of the image captured or without the 
calibration of the camera. In the job of Nasisi & Carelli, a set of equations needed to establish 
relationships among a bidimensional image captured by a video camera and its 
corresponding tri-dimensional image is obtained, an equation set that is important when a 
single camera is being used. The jobs of S. Skaar et al., (who participated in the 2003 Mars 
Exploration Rover experiment of NASA), over the concept of Camera Space Manipulation 
(CSM) (Skaar et al., 1992) and the concept of Mobile Camera Space Manipulation (MCSM) 
(Seelinger et al., 2002), must be cited. The MCSM method consists of the estimation of the 
relationship among the characteristics position of the manipulator and its corresponding 
points in the image spaces of the two cameras mounted over the robot; the CSM concept is 
quite similar but with more restrictions. Both methods, the CSM and the MCSM require not 
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only the parameters of the cameras to be completely known, but also the kinematics model 
of the manipulator, even if they don’t require the complete calibration of the camera and the 
manipulator. These methods require a set of cameras, while the methodology proposed in 
(Santos-Victor & Sandini,1997) and (Nasisi & Carelli, 2003) involves only one. 
One vital characteristic of every navigation strategy is the way that the decisions are taken 
on it when the sensory system indicates the presence of obstacles on the robot trajectory. 
Different obstacle avoidance strategies have been presented; among those strategies the use 
of electrostatic fields - where the robot is modeled as a positive electric charge, as also the 
obstacles, and the objective of the trajectory is modeled as a negative charge - must be 
mentioned (Dudek & Jenkin, 2000) and (Khatib, 1985); the Coulomb law is applied to 
determine the trajectory of the mobile robot.  
In 1995, Li and Horowitz presented the concept of velocity fields (Li & Horowitz, 1995); in 
such a case, a vector velocity is defined over the trajectory of the robot for each possible 
position coding a specific task. Using control schemes with the velocity field as the reference 
for the system, has allowed approaches to the problem employing different control schemes 
instead of the classic following trajectory problem. In this approach, the improvement of 
coordination and synchronization among the degrees of freedom of the robot are much 
more important than the time to execute a given task. In the Figure  1 an example of this 
strategy is presented. 

Figure 1. Velocity Field for a manipulator in the plane 

With the introduction of the concept of velocity fields, also emerged the strategy of Passive 
Velocity Field Control (PVFC). In this control strategy the tasks are coded using the velocity 
and energy that the system could transfer to the environment and that it is limited by a 
constant (Li & Horowitz, 1999). Li and Horowitz presented the properties of the PVFC 
strategy doing special emphasis on the contour following problem in (Li & Horowitz, 2001a) 
and (Li & Horowitz, 2001b). 
In many research works related with velocity fields, the stability of the control schemes is 
pursued; Cervantes et al. (Cervantes et al., 2002) proposed a Proportional – Integral 
Controller based on compensation errors techniques where it is not necessary to have a deep 
knowledge of the robot dynamics, obtaining semi global asymptotically stable conditions on 
the following errors of the velocity fields. Moreno and Kelly, in (Moreno & Kelly, 2003a), 
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(Moreno & Kelly, 2003b) and (Moreno & Kelly, 2003c), proposed different control schemes 
using velocity fields focusing mainly on the asymptotically stable conditions. 
Other investigations related to velocity fields have focused in other areas, such as adaptive 
control (Li, 1999). In that work, Li proposed an adaptive control scheme using velocity fields 
as references for robots with unknown inertia parameters. Also in (Dixon et al., 2005) an 
adaptive derivative control is presented in order to follow a velocity field. In almost all the 
previous cases, the works had as an objective the design of control schemes taking a velocity 
field as a time-invariant reference, obtained after a theoretical or analytical procedure. Only 
few works in the literature have considered the case when the field is time-dependent. 

Figure 2. Robot system employed in (Kelly et al., 2004a) 

Figure 3. Robot system employed in (Kelly et al., 2004b) 

Yamakita et al., in (Yamakita & Suh, 2000) and (Yamakita & Suh, 2001), applied PVFC to 
cooperative robots, obtaining field velocity generating algorithms for tasks where it is 
necessary to follow certain orders of a master robot. For this work the authors created an 
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augmented dynamic system using an inertia flywheel, in order to avoid the problems of 
control following by velocity fields. Recently, Kelly and collaborators in (Kelly et al., 2004a) 
and (Kelly et al., 2004b), used a camera as a main sensor in a control scheme by velocity 
fields in order to control a mobile robot and a robot manipulator. Particularly in (Kelly et al., 
2004a) is presented a controller by velocity fields for a manipulator of two degrees of 
freedom that incorporates an external camera to capture the manipulator movements and 
the work environment. On the captured image a theoretical velocity field that the 
manipulator is capable to follow is pre-defined. In the Figure 2 an example for this case is 
presented.
In (Kelly et al., 2004b), the control is applied to a wheeled mobile robot where the video 
camera is located over the robot. Like in the previous case, the camera is located in such a 
way that covers the environment and the robot itself. In the Figure 3 can be visualized the 
system under study. 

1.2. The proposed approach 

During last years, as it was mentioned, the use of artificial vision in robot tasks has been 
increasing. In many applications, such as rescue jobs, the use of vision to generate velocity 
fields is under study. The dynamic modification and generation of the velocity field itself, 
changing it with the environment modifications, is a new research area. If timing is not an 
issue in the control objectives, then velocity field control, where the speed can be adjusted as 
desired, is a potentially important technique. For instance, if the objective is to control a 
vehicle’s trajectory at 80 Km/h, the velocity field can be adjusted to that speed and modified 
in order to avoid obstacles detected by a camera (either on board or external), while keeping 
close to the original trajectory in order to reach the final objective. This approach could be of 
crucial importance in rescue tasks where a flying machine could be “understanding” the 
environment, and changing the velocity field references for another robot on the ground. 
Another potential application is in automatic warehouses where changing the velocity field 
references could be assigned different and changing tasks to the manipulator. In the future, 
the dynamic velocity field generator that is presented in this work will be modified to in 
order to allow the generation of a 3-dimensional velocity field. Also, the algorithm is going 
to be used to coordinate the tasks of cooperative robots for Futbot, submarine vehicles 
coordination, cooperative multi-robot observation, etc. 
In order to perform the tests, an experimental setup has been integrated. This experimental 
setup consists of: 
1. A Hemisson differential mobile robot, created by the Swiss company “K-Team 

Corporation”. 
2. 2.4 GHz wireless video camera, model XC10A and its wireless receptor VR31A. This is 

the only sensor employed in the experiments in order to detect the robot and the 
obstacles. The camera has a resolution of 640 x 480 pixels and offers up to 30 frames per 
second (fps).  

3. Image acquisition card model NI-PXI-1407 using the Standard RS-170 for 
monochromatic video signals. All the characteristics can be seen in Table 1. 

4. A PXI module from National Instrument is employed to process the data. The module 
is the NI-PXI-1000B. 
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Description Standard monochromatic  
Bus PXI/CompactPCI 
Video Inputs 1 

640 × 480 RS-170 Spatial Resolution 
768 × 576 CCIR 

Píxel depth 8 bits 
Video input Standard RS-170, CCIR 
Digital I/O  1 

Table 1. Characteristics of the NI-PXI-1407 

On the NI-PXI-1000B run all the LabView DLL’s and Matlab applications. 
The working environment consists of an area of approximately 6 square meters where the 
robot navigates. The wireless video camera was located 2.5 meters over this area. In Figure 4 
is shown a sketch of the experimental arrangement. 

Figure 4. Environment employed for the experiments 

The problem for the generation of a dynamic velocity field was divided in three different 
steps:
1. A generator of the initial velocity field. 
2. The processing by the artificial vision system. 
3. The generator of the evading velocity field. 

1.3. Description of the generated system 

Initially the user must define the task without taking into account the obstacles that might 
appear in the trajectory of the mobile robot. In order to indicate the trajectory a generator 
was developed for the initial velocity field. This generator is presented later in this chapter. 
In order to avoid the obstacles presented during the trajectory of the mobile robot, it is 
necessary to identify their existence, determining its location, size and orientation. In order 
to solve this problem the artificial vision system was. The information supplied by the 
artificial vision system is employed to modify the initial velocity field using the generator of 
the evading field. Once the desired task is well known and also the position and orientation 
of the obstacles the system creates the local velocity fields that surrounds each obstacle; the 
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final navigation field is obtained adding the initial field with the evading fields pondering 
each one properly. 
In first place and before testing the system in the experimental setup, the results were 
validated using the Easy Java Simulations platform. The results are presented also in this 
chapter.

2. Vision System Implementation 

This section describes two implementations of the vision system for the robot and obstacle 
identification process. In both cases the robot detection was made by using a pattern 
matching technique, and for the obstacle detection were employed two different 
approaches.
The first implementation is based on the hypothesis that any object present in the scene can 
be described as any of the following regular shapes: circle, square and rectangle. In this case 
it was utilized a classification strategy for its identification. 
For the other system, the obstacle detection was made through a particle analysis, in order 
to cope with those problems arisen by using the previous approach in images containing 
obstacle with irregular shapes. 

2.1. Robot identification by pattern matching 

The pattern matching process consists of the fast detection into the image of those regions 
that have a high concordance with a previously known reference pattern. This reference 
pattern contains information related with edge and region pixels, thus allowing the deletion 
of redundant information contained into a regular shape.

2.1.1. Normalized Cross-Correlation 

The correlation process based on the Euclidian distance, is described by the following 
equation:
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Where f is the input image of size LxM, and the sum is done over (x, y) in the window 
containing the sub-image t localized at (u, v), of size JxK. By expanding d2 we obtain: 
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the resulting term for the cross correlation is the measure of similitude or concordance 
between the image and the pattern. For this case u = 0, 1,…, M-1, and v = 0, 1,…, L-1, and 
J=M and K=L.
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Figure 5 shows the correlation process assuming that the origin for f is placed in the upper 
left corner. Therefore, the correlation process consists on moving the template t through the 
area of the input image and to calculate the value for C. By this method, the maximum value 
for C points the position where is the highest similitude between t and f.

Figure 5. Window movement during the correlation process 

Due to the dependence of the correlation values to intensity variation in the image, is 
required to compute the normalized version for the correlation given by (4): 
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Where t is the average intensity value for the pixels in the image and vuf , is the average of 
f(x,y) in the template. The obtained value for R is normalized between -1 and 1, and is 
independent to intensity of f and t images. 

2.1.2. Pattern recognition process. 

The detection pattern process is divided in to main subsystems: learning and recognition 
itself. 
The learning phase analyzes the template image in order to extract features that can 
improve recognition process compared to standard approach. 
The pattern learning algorithm can be described as follows (National, 2004): 
• Pseudo-random Image sub-sampling: By this method, it can be obtained more 

uniformity on sampling distribution through the image, without using a predefined 
grid. With a uniform grid information like the presence of horizontal and vertical 
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borders could be lost. In the other hand, completely random sampling can produce 
large areas with poor sampling or over-sampled areas. 

• Stability analysis: The pixels sampled by pseudo-random algorithm are analyzed in 
order to verify stability (uniformity) on their vicinities. Based on this information, each 
pixel is classified according to its uniform vicinity size (i.e. 3x3, 5x5). By doing so, it is 
reduced the number of comparisons required for further matching process. 

• Features identification: it is an edge detection process, which output is used to detailed 
adjustment for the placement of the recognized pattern. 

• Rotation invariance analysis: is based on the identification of a circular intensity profile 
on the pattern image, that will be used later to localize rotated versions of the same 
pattern because those versions will have the same profile with an displacement factor 
proportional to its original rotation. 

The learning phase is computationally complex. It can take several seconds to be completed. 
However, this process is done only once and its result can be stored for further applications. 
The pattern recognition algorithm consists on two processes: 
• The utilization of a circular intensity profile obtained in the learning phase, in order to 

localize rotated and displaced versions of that profile through the image. 
• The utilization of those pixels obtained in the pseudo-random sub-sampling, that are 

employed in a correlation process between the candidates previously identified, giving 
it a score that is used to determine if that candidate can be classified as a pattern match. 

2.1.3. Pattern recognition subsystem – Implementation 

As it was stated in the previous section, the pattern recognition subsystem is separated in to 
stages: learning and matching; each of them was implemented as an VI in LabVIEW v7.1®. 
The corresponding VI for the matching stage also contains the implementation for the 
obstacle detection. However, in this section it will be described only the pattern recognition 
system. 

Pattern Learning 

The learning stage starts by loading an image that contains the pattern to be recognized. For 
this implementation, the desired recognition target is a mobile robot model Hemisson. Then 
it is performed the pattern learning and the resulting information is stored in a PNG image 
file.
Figure 6 shows the block diagram for the pattern learning process, described with more 
details in further sections. 
• Initialization: A blank image with 8 bits per pixel is created. 
• Image file loading: Over the previously created image it is loaded the file image 

containing the desired pattern.  
• Image conversion: The image is converted into a grayscale one, to be processed by the 

learning module.  
• Learning module configuration: it is configured so it generates information for the 

pattern recognition rotation invariant. 
• Storing: The information related to the pattern learning in a new PNG image file. 
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Figure 6. Block diagram of Pattern Learning Process 

Figure 7 shows the VI created for this learning subsystem. 

Figure 7. VI for the learning stage 

This VI has neither explicit input nor output parameters, because it relays upon the loading 
of an image file for the learning process. After de VI construction, it is created a Dynamic 
Link Library (DLL) using the Math Interface Toolkit from LabVIEW®. This provides a DLL 
file with the subroutines so they can be called from Matlab®.  

Pattern recognition 

The recognition process consists in taking a snapshot from the workspace, loading the file 
containing the learning pattern previously obtained, and searching such pattern on the 
captured image. Later, it is determined the position and orientation of the pattern. The 
recognition process is described in Figure 

Figure 8. Block Diagram of the pattern matching process 

• Initialization: two blank images with 8 bpp are generated. One image corresponds to 
the video capture and the other one is for the patter image loading. It is also started the 
video acquisition through the NI IMAQ 1407 module. 
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• Image Capture: It is acquired a real image from the workspace, the resulting image in 
grayscale. 

• Image resizing: In order to improve position calculation and detection speed, the 
captured image is resized from 640 x 480 to 480 x 480 by cropping it. This image size 
corresponds to a physical working area of 4 m2.

• Information loading: It is loaded the information related to the learning pattern 
contained in the PNG image file stored in the previous system. 

• Matching module configuration so it performs the invariant rotation pattern search. 
• Matching process: This process will be done with the acquired image and the image 

loaded with the learning information. In case of a successful detection of the desired 
pattern, it will be obtained the position of the coincidence in the working space and its 
rotation, as shown in Figure 4.7. 

Figure 9. Representation of position and rotation convention 

As it was done for the VI of the learning stage, it was created a DLL file from the pattern 
recognition VI, which we will identify as “detection engine”. The matching process has no 
input parameters; it only loads the image containing the information in the learning process. 
The output parameters are the position and orientation for the detected pattern. 

2.2. Obstacle Detection 

2.2.1. Classification technique. 

The obstacle detection is based on the classification of binary particles, in which an 
unknown particle is identified by comparison of their most relevant features against a set of 
characteristics that conceptually describes previously known classes samples. 
The obstacle detection based on classification techniques has two main phases: the learning 
process, which was implemented utilizing the NI Vision Classification Training tool, and the 
classification process itself. 

Learning Process 

The training process consists in the recollection of a set of samples images that contains 
possible obstacles that can be found and detected by the camera. From these samples is 
obtained a set of features, known as characteristics vector that describe unequivocally each 
class of known sample. For example, it could be the object circularity or elongation. Once 
determined the characteristics vector and collected the samples, each object class is labeled. 
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Classification Process 

The classification process involves the pre-processing of the input image, the features 
extraction and classification, as is shown in Figure 10.

Figure 10. Steps for the Classification process 

During the pre-processing stage, the image is prepared for the classification by adjusting the 
brightness to a level where the classifier can detect the object. This value depends of scene 
illumination at detection process. Other pre-processing operations are done, like 
thresholding and binary morphology: the input image in grayscale is converted into a 
binary image, and later an eroding process is applied to delete irrelevant particles. 
Through feature extraction, the information contained in the image is reduced because only 
distinctive characteristics are retained to distinguish each class. Also, those features are 
scaling, rotation o symmetrical transformations invariant, while they still allows to do 
correct objects classification. 
The final step is to classify the captured objects in the images by using the extracted features. 
The classificatory algorithm employed was Nearest Neighbor (NN), because it 
computational simplicity and effectiveness in low features situations. It was employed 
Manhattan metric. 
Under this classification algorithm, the distance between a given feature input set  X and an 
unknown class Cj is defined as the distance to the closest sample that represents such class: 

( ) ( )j
iij XXdCXD ,min, =  (5) 

Where d(X, j
iX ) is the Manhattan distance between X and j

iX .
Finally, applying the NN algorithm it is obtained the following rule: 

( ) ( )iij CX,DminCX,Difclass =∈ jCX  (6) 

2.2.2. Implementation of the Obstacle Classification and Detection System. 

As it was shown in section 2.2.1, the obstacle detection process by using the classification 
technique has two stages: learning and classification. The learning process is done through 
the Classification Training of NI Vision interface that generates a CLF file containing all the 
information related to the different obstacle classes. In the classification phase, it is loaded 
the information generated in the training interface and it is performed the specific 
classification of found objects. 
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Object Learning (Training interface): 

As it was above mentioned, the learning process is done through NI Classification Training 
software. Figure 11 shows the sequence followed to create the classification file.

Figure 11. Block diagram of Object Learning phase 

• Classifier configuration: features are selected according to specific requirements for the 
classifying process. It can be controlled the thresholding method called “clustering”, 
that consists in sorting the image histogram into a discrete number of classes according 
the number of phases detected in the image. 

• It is also configured so it can detect brilliant figures because many of the used objects 
have high white levels.  

• In the engine options, it is selected the desired classification method (NN) and the 
distance metric (Manhattan). 

• Sample recollection: are loaded files containing the pattern to be classified. If the image 
file contains more than one pattern, the desired one can be enclosed in a rectangle. 
Then, it is identified the class to where the object belongs, and a tag is added. Once the 
tag is specified one can proceed to add the sample. 

• Training: once the sample has been added, it is performed the features vector of the 
sample that will identify in a unique way a class. This process must be repeated for each 
added class. 

• Storing: at this stage, all the obtained data is saved into a file with information of each 
class. 

Based on the file obtained on the previous section, is possible to create a classification 
session in a VI of LabVIEW that performs the object classification for the images acquired 
through the camera. 

Objects detection and classification 

As it was stated in section 2.1.3, this module is implemented with the pattern matching 
module in the same VI file, so the first three steps are almost the same; the only difference is 
that this specific module requires four white images. 
This module has as inputs Brightness, Contrast and Gamma from the acquired image, which 
default values are 50, 45 and 1 respectively. According to the existing illumination in the 
scene, those values can be adjusted son the vision system can “see” the objects in the visual 
field. Usually is enough to increase the Brightness value. 



Object Recognition for Obstacles-free Trajectories Applied to Navigation Control 373

Figure 12. Block Diagram of the Object Detection and Classification Process 

The detection and classification process is illustrated in Figure 12, and is implemented in the 
following way: 
• Image pre-processing: a level inversion is applied to the grayscale image and a particle 

analysis is applied converting the grayscale into a binary image via thresholding. Then, 
the image is filtered through the morphological process of erosion in order to delete 
meaningless particles from the particle analysis. 

• Particle detection: A classification particle analyzer is applied to the filtered image, 
which is similar to the simple particle analysis, but this one also provides the mass 
center of the particles, and the coordinates of the rectangle that enclose it. 

• Classification: the particles in the binary images are classified with the particles 
positions and the classification sections created in the learning process. 

• Obstacle parameters: once the object has been classified, it is calculated the diagonal of 
the smallest null-rotated rectangle that encloses the figure. For the cases of rectangle 
and square detection it is also extracted the object orientation, by using Rotation Detect
from IMAQ Vision. 

Figure 13. Function of NI-IMAQ package for detecting Object Rotation 

• Results: the final outputs for the object detection and classification system are the 
positions of the detected figures on the original image, values obtained in the particle 
detection phase. Those values are sorted into an array for each corresponding figure, 
thus giving three different arrays for object positions. The rotation angles and diagonal 
lengths are also sorted according to the related figure, so it gives three more arrays for 
the angles y other three for the calculated diagonals.  
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4.2.3 Particle Analysis Technique
A particle is a group of pixel with non-zero values in an image, usually binary. The particles 
can be characterized by measurements related to its attributes as position, area, shape and 
others (National, 2004). 
The particle detection consists in applying an erosion process to the original image so it can 
be removed small particles generated by noise present in the image acquisition. The 
resulting image is passed through a threshold filter in order to obtain a binary image.  
The non-zero pixels and their neighbors with connectivity ‘8’ create a particle with an 
arbitrary shape, but avoid the apparition of some holes.  
The vision system here proposed takes the detected particles and for each one of them 
extracts the following parameters: 
• DF: Maximum Feret’s Diameter. 
• Fx1: X coordinate for the starting point of the DF.
• Fy1: Y coordinate for the starting point of the DF.
• Fx2: X coordinate for the ending point of the DF.
• Fy2: Y coordinate for the ending point of the DF.
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• Coordinates of the points that form the convex hull. 
The Feret’s Diameter (DF) is the straight line that connects the two most separated particles 
of a particle, and the convex hull is the convex polygon of minimum area that contains all 
the points of the particle. 
With the coordinates of the convex hull, are found those points its points more separated at 
each side of the DF, which are used to define a perpendicular line to it. The combination of 
both straight lines defines the rectangle with lower area that contains the particle. By 
algebraic manipulation of this rectangle it is obtained the circumscribed ellipse. The Figure 
14 shows this process: 

Figure 14. Parameter extraction process from particle analysis

3. Applications of the Vision System 

3.1. Velocity Field Generation 

As it was previously mentioned, expressing tasks or trajectories in terms of velocity is a 
research area very important today. It allows the use of velocity controllers, passive 
controllers, and help to improve the performance of the robot while it is doing its job. 



Object Recognition for Obstacles-free Trajectories Applied to Navigation Control 375

Using the Vision System proposed consisting on a single camera watching the workspace of 
the robot is possible to detect the obstacles presented on the robot trajectory. The application 
of Velocity Field Generation based on Artificial Vision constitutes a valuable contribution to 
the state of the art. 
In the following paragraphs a strategy to generate obstacles free velocity trajectories is 
presented. The problem was divided into two stages linked through the Vision System 
implementation. These stages are: the generation of an initial velocity field, and the 
generation of an evader velocity field for each object detected. 

3.1.1. Initial velocity Field Generation 

The system allows user defined trajectory to be followed by the robot. It can be a hand made 
one or a set of straight lines. The algorithm developed was tested for 41x41 velocity fields 
and can be described as follows. 
The vision system takes a snapshot of the robot’s workspace. This image is cropped to hold 
only the ROI which is subsampled to a 41x41 image (this resolution of the velocity field 
offers 1 vector each 5 cm, which is less that a half of the robot dimensions). Over it, the user 
traces the desired trajectory.  
When the user finish defining the desired trajectory, coordinates of the pixels to be part of 
the trajectory are extracted by a thresholding process and stored in an N-size 1D array of 
(X,Y) coordinates pairs. N is the number of points or pixels of initial trajectory. 
Trajectories can be open or closed. In both cases a sorting process is performed, establishing 
as sorting parameter the Euclidean distance from one point to another, organizing them 
from closers to more distant. When the trajectory is open, it is necessary knowing where it 
begins and where ends. Studying neighbors of each element of the sorted array, the start 
and end point are obtained. 
Then an approximation vector field is defined. For that, it was considered a 2D array of 
41x41 elements containing the coordinates (X,Y) of all pixels of a 41x41 image, i.e. element (i, 
j) have a value of (i,j). For each element of the 2D array, the closest element of the trajectory 
is searched based on the Euclidean distance from point (i, j) of the 2D array to each element 
of the 1D array containing the coordinates of trajectory. Each approximation vector is 
defined as the normalized one whose direction is obtained from the subtraction of the 
closest point of trajectory and the point of the 2D array being analyzed. 
A tangent vector field is also defined. Each vector is obtained from the subtraction of the 
element p + 1 with element p 1, where p is the index of the closest point of the trajectory to 
the point (i, j) being studied. When the closest point is the point where the trajectory starts, 
the subtraction is performed between elements p + 2 and p (p = 0), whereas if it is the ending 
one, points subtracted are the p and p 2(p = N 1). With this assumption, tangent vectors 
will always have congruent senses. Tangent vectors are normalized too. 
The “initial” velocity field is obtained performing a weighted sum, expressed in (7), between 
the approximation and tangent vector fields. The selection of weights depends directly of 
the distance between point (i, j) and the closest one of the trajectory. As a weight function a 
sigmoid was chosen. If point (i, j) is close to trajectory, the tangent vector will prevail over 
the approximation one and vice versa. 

( ) ( )ijtijaij dfVdfVV
ijij 21 ⋅+⋅=  (7) 
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where ijV  is the vector of the final velocity field, 
ijaV and

ijtV are the approximation and 

tangent vectors at ij, respectively. ijd is the Euclidean distance from point ij to the desired 
trajectory, whereas ( )ijdf1  and ( )ijdf 2  are defined by (8) y (9). 
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( ) ( )ijij dfdf 12 1 −=  (9) 

Figure 15 shows the effect of the weighting functions expressed in (8) y (9). 
Parameter was chosen to be 0.4 because this value allows an important attenuation of the 
tangent vectors when dij > 6 (3 times the dimensions of the robot). Figure 15 shows the effect 
of the weighting functions expressed in (8) y (9). 

Figure 15. Weighting functions 1f and 2f effect. Note that for little distances the tangent 
vector is greater than the approximation one, and vice versa 

3.1.2. Dynamic Velocity Field Modification 

The “evader” velocity field generation module takes information provided by the vision 
system, parameterizes the correspond ellipse for each obstacles and create a velocity field 
that surrounds the object. 
The proposed algorithm contemplates dividing the ellipse into four regions: one for entry, 
one for exit and two for transitions. 
In the transition regions the velocity field is chosen to be parallel to the trajectory given by 
the ellipse contour, i.e. tangent to the ellipse. The general tangent line equation at any point 
(X0, Y0) is given by (10). 
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where (P, Q) are the coordinates of the location of the ellipse and A and B represent a half of 
the major and minor axes respectively. From (10), the unit tangent vector at any point 
(X0,Y0) can be deduced to be 
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In the entry region the field is defined in the direction and sense toward the ellipse contour 
and is turned aside smoothly until it converges to the tangent vector as the point is closer to 
the transition region. This is achieved through a weighted sum of the approximation and 
tangent vectors to the ellipse, where the weights depends on the proximity to the distance 
from a given point to the edge between entry and transition regions.  
Entry and exit regions are always of the same size. Transitions regions too. The size (angle) 
for each region is chosen such as they have an area equal to a quarter of the ellipse’s area. To 
accomplish this requirement, the area of the entry (or exit) region is given by (14) 
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Consider Figure 16 where angles related to an ellipse are defined. Based on it, is possible to 
obtain the relations shown in (15). 

Figure 16. Definition of Angles and coordinates of the point belonging to the ellipse 

( )θcos⋅= AXc ( )γcos⋅= rXe

    (15) 
( )θsin⋅= BYc ( )γsin⋅= rYe ( )θsin⋅= BYe

r is defined by (16) in terms of θ, or, considering (17), it can be defined by (18) in terms of γ.

( ) ( ) ( )θθθ 2222 sincos ⋅+⋅= BAr  (16) 

( ) ( )γθ tantan ⋅=
B
A  (17) 
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Solving (14), the size (angle) of the entry and exit region is defined by (18). 

( )

( )⋅+

+
⋅=⋅

γ

γ
ϕ

2

2

2

2

tan1

tan

arctan22

A
B

A
B

 (19) 

The orientation of regions is given by the angle of the original field at the point where the 
object is located. Regions must be rotated for achieving an entry region aligned with the 
original velocity field. 
For the exit region the same approach used for the entry region is employed. However, in 
this case, the field is defined leaving the ellipse. 
Approximation vectors a any point (X0, Y0) is given by (20) 
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The division proposed by using the defined regions wants to achieved an “evader” velocity 
field similar to the sketch shown in Figure 17. 

Figure 17. Sketch of “evader” field. Following the direction and sense of the initial field at 
the point where is located the obstacle, the different regions are defined. Note the deviations 
of field in the entry and exit regions 
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3.1.3. Results of the Vision-Based Velocity Field Generator 

For testing the “initial” velocity field generator two hand made traces was introduced. 
Figure 18 shows the obtained velocity fields. 
In case (a) the trajectory is open, has an ‘Z’ shape, and the field generated converged 
successfully to it; inclusive, the end point of the trajectory results to be a sink, as it was 
desired. Case (b) corresponds to the well known circular trajectory (Li & Horowitz, 1995) 
(Moreno & Kelly, 2003c), here hand-traced. It is observed that velocity field converged as 
expected. It is important to remark that while the distance to the desired trajectory is higher 
the approximation vector prevails over the tangent one, and when it is lower, the tangent 
one prevails. 

Figure 18.Velocity Field. Note the hand made desired trajectory remarked in black 
The “evader” algorithm responds to an arbitrary object as shown in Figure 19. 

Figure 19. “Evader” velocity field for an arbitrary object. The four predefined regions are 
shown and the behavior of the algorithm can be observed 
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Figure 19.a shows an object located on a place where the original field has an orientation of 
75° and the circumscribed ellipse has 25°. Figure 19.b presents the evader field for an object 

whose circumscribed ellipse has 90° and the original field at the point the object is placed 
has 55°. In both figures the exponential fading imposed is shown. This effect assures that the 
evader field only affects the neighborhood of the object. 
Now it is presented a test of the system with the three modules combined. Figure 14 
resumes the results obtained. 

Figure 20. Modified velocity field for two obstacles detected
Inserting two arbitrary objects at two arbitrary positions for the circular velocity field shown 
in Figure 20, the final velocity field obtained offers a free-obstacles trajectory, however, at 
the edges between the influence “evader” field and the initial one, it is not enough smooth 
as desired. 

3.2. Fuzzy Logic Controller and Velocity Field Control  

The purpose of this system is to control the position of a small wheeled mobile platform on a 
two dimensional work space, using an overhead vision system. The main sensor used is a 
wireless camera placed at 2.7 m from the floor and able to observe all the workspace of the 
mobile platform. This camera can provide a maximum of 30 frames per second of 640x480 
pixels, but the sample rate used is determined by the processing speed of the algorithm, 
since it works over a snapshot taken on each cycle and, usually, processing cycle is larger 
than the sampling rate. The image acquired is cropped in order to provide an image of 
480x480 pixels, covering an area of 6.25 m2.
For test purposes, a 2.4GHz Wireless Color Camera model XC10A was used, connecting it to 
the PC by a generic RCA to USB adapter. The robot employed was a differential drive 
Lynxmotion Carpet Rover The software was developed employing LabVIEW v7.1 with NI 
IMAQ Vision v7.1 and Matlab v7.1. All the experiments were done with RGB images, and 
the surface of the workspace was not altered to deal with the differences of luminosity and 
other typical issues associated with vision systems.
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3.2.1. Vision System Description 
The objective of this stage is to obtain the position (in pixels) and the angle (in degrees) of 
the mobile platform at any moment. This is achieved using a slight modification of the 
system proposed by (Bolaños et. al., 2006).  

Mobile Robot Detection 

The pattern matching algorithm (National, 2004) consists in the localization of regions that 
match with a known reference pattern on a RGB image. The reference pattern is also known 
as template, and contains information related to edge and region pixels, removing 
redundant information in a regular image. In this way, the matching process is done in a 
faster and more accurate manner. In the case where a pattern appearing rotated in the image 
is expected, it is possible to store pixels specially chosen, whose values reflect the pattern 
rotation.
The comparison between the template and different regions of the camera image in the 
pattern matching process is done using a correlation algorithm based in the calculus of the 
squared Euclidean distance: 

( ) ( ) ( )[ ]−−−=
yx

tf vyuxtyxfvud
,

22

, ,,,  (23) 

where f is the image. The sum is performed over (x, y), in the window containing the sub-
image t located at (u, v). Expanding d2, and making some considerations (Bolaños et. al, 
2006), the remaining term of the cross correlation 
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,
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is the similarity or matching measure between image and template. 

Process Description  

The detailed description of the pattern matching algorithm implementation is as follows 
(Bolaños et al., 2006):  
• Initialization: Two RGB blank images are generated. 
• Image capture: A real RGB image from the workspace is captured. 
• Cropping: The captured image is cropped to a 480x480 pixels (from 640x480 pixels). 

This image size allows the visualization of a workspace of 6.25 m2.
• Information load: The information (related to pattern learning) contained in the PNG 

image stored in the learning process is loaded.  
• Pattern matching module setup: The pattern matching module is set to rotation-

invariant mode so it can detect the desired pattern regardless of its rotation. 
• Matching: The matching process is done according to the configuration above described 

between the captured image and the loaded image (with the information from the 
learning process). If the desired pattern is located, the result will be its position within 
the image and its orientation.
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3.2.2. Graphic Interface 

The graphic interface was made in LabVIEW v7.1. First the user selects the template the 
software will try to find, in this case the mobile platform, with an angle of 0º (Figure 21.a).  

    
Figure 21. Template selection process and pattern matching illustration
Once the template is selected the software is able to find the best match and return the X and 
Y coordinates of its position in pixels (Figure 21.b). 
In practice, there is a problem due the uncontrolled luminosity. Sometimes the algorithm 
gives false matches which affect the whole system. To deal with this problem, the developed 
program was allowed to give not only the match with the highest correlation but also others 
with a lower correlation. A discriminator then verifies which of the matches is inside the 
neighborhood of the last position. Besides, the algorithm gives a noisy estimation, which is 
reduced by filtering it. 
With these considerations the response of the system is highly improved, obtaining an 
accurate position in most of the cases. 

3.2.3. Controllers Implementation 

In this case the task of the controller is to move the platform from one point to another 
regardless of the trajectory. The problem is that the system is highly non-linear and even if 
lineal controllers have shown good performance when non-linear systems are linearized, 
other controllers exhibit better performance. Neural and fuzzy controllers are among them. 
The control technique was based in the idea of decoupling the locomotion system of the 
mobile platform. To achieve this, the error in X and Y coordinates (Cartesian mode) is 
transformed into magnitude and angle errors (Polar mode), then these errors are taken by 
the controller which gives a new references for linear and rotational velocity. Finally these 
references are transformed into references of right and left velocities (Dudek & Jenkin, 2000) 
by the equation (25).  

awvv
awvv

linearright

linearleft

⋅−=

⋅+=
 (25) 

A. Linear Controller  

This controller was a conventional PI where the error and the sum of previous errors are 
added to generate the control signal. The inputs of the control system are distance and angle 
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errors and the outputs are references for right and left velocities directly. The control scheme 
employed is shown in Figure 22. 

Figure 22. Linear control scheme 

B. Fuzzy Logic Controller  

As an option to the linear controller, a fuzzy logic one was designed to work on the same 
inputs and outputs as the linear controller. The FIS Editor of Matlab v7.1 was used for this 
purpose. Triangular membership functions were chosen because of their simplicity to 
implement in microcontrollers.  
The range of each of these variables was divided in the following membership functions:  
• Angle Error (Degrees): Small Positive (0. -90.),  Big Positive (90. -180.), Small Negative 

(180. -270.) and Big Negative (270. -360.).  
• Distance to the destination: Far (150 cm - 800 cm), close (20 cm -150 cm) and very close 

(0 cm - 40 cm).  
• Velocities (Left and Right wheels): Fast (8.5cm/s), Medium (5 cm/s), slow(3.5cm/s) and 

very slow(0.8cm/s).  
With these membership functions the system of fuzzy inference is based on the Mamdani’s 
aggregation method (Ying, 2000), with 9 fuzzy rules, and defuzzyfication technique based 
on the gravity center.  
The base of rules was formed like is shown in Table 2.  

Distance Angle Error Left Velocity Right Velocity 
Very Close X Very Slow Very Slow 

Close Small Positive Slow Very Slow 
Close Small Negative Very Slow Slow 
Close Big Positive Medium Very Slow 
Close Big Negative Very Slow Medium 

Far Small Positive Fast Medium 
Far Small Negative Medium Fast 
Far Big Positive Fast Slow 
Far Big Negative Slow Fast 

Table 2. Fuzzy Rules Base 
Proposed linear controller for this system is able to guide the robot towards the desired 
position, but presented some problems. Figure 23 shows the resulting trajectory when the 
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proposed linear controller was used, and can be observed how the robot oscillates near the 
final position. Oscillations at the end point were very strong around it and impossible to 
eliminate, since controllers parameters that worked well far from the destination, did not 
give good results in its proximity. The controlled variables saturated in some circumstances, 
affecting the response of the controller. Also the tuning of the controller was very difficult 
due to the interdependence between linearv and ω.

Figure 23. Resulting Trajectory with the linear controller 
The Fuzzy controller response shown in Figure 24 was more reliable. The robot stops at 
destination showing a good behavior both far and in the proximity of the destination. Also, 
the characteristics of the membership functions ensure that the outputs won’t saturate and 
its decoupling facilitates the design and tuning of the controller.  

Figure 24. Resulting Trajectory with the fuzzy controller 
The system was able to produce a reliable position measurement based only in the visual 
sensor and the related vision system, working in difficult situations of illumination and 
noise, thanks to the spatial continuity considerations taken into account.   
The implemented controllers guided the robot towards the final destination, but the fuzzy 
system showed advantages over the linear controller both in the design and tests stages. The 
fuzzy logic controller has a better performance mainly because it is non-linear and is 
designed to deal with non-linear systems. Also it can absorb possible errors of the vision 
platform, by minimizing its effect in the controller. Additionally it is easier to tune than the 
linear one. 
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1. Introduction  

Vision-based servoing schemes are flexible and effective methods to control robot motions 
from cameras observations (Hutchinson et al 1996). They are traditionally classified into 
three groups, namely position-based, image-based and hybrid-based control (Espiau et al 
1992), (Hutchinson et al 1996), (Malis et al 1999). These three schemes make assumptions on 
the link between the initial, current and desired images since they require correspondences 
between the visual features extracted from the initial image with those obtained from the 
desired one. These features are then tracked during the camera (and/or the object) motion. 
If these steps fail the visually based robotic task can not be achieved. Typical cases of failure 
arise when matching joint images features is impossible (for example when no joint features 
belongs to initial and desired images) or when some parts of the visual features get out of 
the field of view during the servoing. Some methods have been investigated to resolve this 
deficiency based on path planning (Mezouar et al 2002), switching control (Chesi et al 2003), 
zoom adjustment (Benhimane et al 2003). However, such strategies are sometimes delicate 
to adapt to generic setup.   
Conventional cameras suffer thus from restricted field of view. There is significant 
motivation for increasing the field of view of the cameras. Many applications in vision-
based robotics, such as mobile robot localization (Blaer et al 2002) and navigation (Winter et 
al 2000), can benefit from panoramic field of view provided by omnidirectional cameras. In 
the literature, there have been several methods proposed for increasing the field of view of 
cameras systems (Benosman et al 2000). One effective way is to combine mirrors with 
conventional imaging system. The obtained sensors are referred as catadioptric imaging 
systems. The resulting imaging systems have been termed central catadioptric when a single 
projection center describes the world-image mapping. From a theoretical and practical view 
point, a single center of projection is a desirable property for an imaging system (Baker et al 
1999). Baker and Nayar in (Baker et al 1999) derive the entire class of catadioptric systems 
with a single viewpoint.  Clearly, visual servoing applications can also benefit from such 
sensors since they naturally overcome the visibility constraint.  Vision-based control of 
robotic arms, single mobile robot or formation of mobile robots appear thus in the literature 
with omnidirectional cameras (refer for example to (Barreto et al 2002), (Vidal et al 2003), 
(Mezouar et al 2004). Image-based visual servoing with central catadioptric cameras using 
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points has been studied by in (Barreto et al 2002). The use of straight lines has also been 
investigated in (Mezouar et al  2004). 
This paper is concerned with homography-based visual servo control techniques with 
central catadioptric cameras. This framework (called 2 1/2 D visual servoing) has been first 
proposed by Malis and Chaumette in (Malis et al 1999). The 2 1/2 D visual servoing scheme 
exploits a combination of reconstructed Euclidean information and image-space information 
in the control design. The 3D informations are extracted from a homography matrix relating 
two views of a reference plane. As a consequence, the 2 1/2 D visual servoing scheme does 
not require any 3D model of the target. The resulting interaction matrix is triangular with 
interesting decoupling properties and it has no singularity in the whole task space. 
Unfortunately, in such approach the image of the target is not guaranteed to remain in the 
camera field of view. Motivated by the desire to overcome this deficiency, we extend in this 
paper homography-based visual servo control techniques to an entire class of 
omnidirectional cameras. We describe how to obtain a generic homography matrix related 
to a reference plane for central catadioptric cameras using imaged points or lines. Then the 
3D informations obtained from the homography is used to develop 2 1/2 D visual servoing 
schemes based on points and lines features. Simulations as well as experimental results on a 
six degrees of freedom robotic arm illustrate the efficiency of omnidirectional vision-based 
control with homography.  

2. Central catadioptric imaging model 

The central catadioptric projection can be modelled by a central projection onto a virtual 
unitary sphere, followed by a perspective projection onto an image plane. This virtual 
unitary sphere is centered in the principal effective view point and the image plane is 
attached to the perspective camera. In this model, called unified model and proposed by 
Geyer and Daniilidis in (Geyer et al 2000), conventional perspective camera appears as a 
particular case. 
In this chapter applications of image and video processing to navigation of mobile robots 
are presented. During the last years some impressive real time applications have been 
showed to the world, such as the NASA missions to explore the surface of Mars with 
autonomous vehicles; in those missions, video and image processing played an important 
role to rule the vehicle. 
Algorithms based on the processing of video or images provided by CCD sensors or video 
cameras have been used in the solution of the navigation problem of autonomous vehicles. 
In one of those approaches, a velocity field is designed in order to guide the orientation and 
motion of the autonomous vehicle. A particular approach to the solution of the navigation 
problem of an autonomous vehicle is presented here. In the first section of this introduction 
a state of the art review is presented, after it, the proposed algorithm is summarized; the 
following sections present the procedure. Finally, some experimental results are shown at 
the end of the chapter. 

2.1 Projection of point 

Let Fc and Fm be the frames attached to the conventional camera and to the mirror 
respectively. In the sequel, we suppose that Fc and Fm are related by a simple translation 
along the Z-axis (Fc and Fm have the same orientation as depicted in Figure 1). The origins C 
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and M of Fc and Fm will be termed optical center and principal projection center 
respectively. The optical center C has coordinates [0  0  - ]T with respect to Fm and the image 
plane Z=f.( -2 ) is orthogonal to the Z-axis where f is the focal length of the conventional 
camera and  and  describe the type of sensor and the shape of the mirror, and are function 
of mirror shape parameters (refer  to (Barreto et al 2002b)). 
Consider the virtual unitary sphere centered in M as shown in Figure 1 and let X be a 3D 
point with coordinates X= [X Y  Z]T with respect to Fm . The world point X is projected in the 
image plane into the point of homogeneous coordinates xi = [xi  yi 1]T. The image formation 
process can be split in three steps as:  
• First step: The 3D world point X is first projected on the unit sphere surface into a point 

of coordinates in Fm : 

X
1

Y
Z

Xm
X

=

The projective ray Xm passes through the principal projection center M and the world point 
X.
• Second step: The point Xm lying on the unitary sphere is then perspectively projected 

on the normalized image plane Z=1- . This projection is a point of homogeneous 

coordinates 1 ( )
TTx x f X= = (where x = [x y]T ): 

X Y= f( ) = 1
Z+ Z+

T
x X

X X
 (1) 

• Third step: Finally the point of homogeneous coordinates xi in the image plane is 
obtained after a plane-to-plane collineation K of the 2D projective point x:

x Kxi =

The matrix K can be written as K=Kc M where the upper triangular matrix Kc contains the 
conventional camera intrinsic parameters, and the diagonal matrix M contains the mirror 
intrinsic parameters: 

0 0
0 0
0 0 1

ϕ − ξ
ϕ − ξM = and

0 0
0 0
0 0 1

ϕ − ξ
ϕ − ξK c = 

Note that, setting =0, the general projection model becomes the well known perspective 
projection model. 

In the sequel, we assume that Z  0. Let us denote 2 2 2 2= s / Z s 1+X /Z +Y /ZX = ,
where s is the sign of Z. The coordinates of the image point can be rewritten as: 

X/Z
x=

1+
 and 

Y/Z
y=

1+
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By combining the two previous equations, it is easy to show that  is the solution of the 
following second order equation: 

2 2-(x+y) (1+ )-1=0

Noticing that the sign of  is equal to the sign of Z, it can be shown that the exact solution is: 

2 2- - (x +y )
= 2 2(x +y )-1

 (2) 

where 2 2= 1+(1- )(x +y )  Equation (2) shows that  can be computed as a function of 
image coordinates x and sensor parameter . Noticing that: 

1( )X xm
−= η + ξ  (3) 

where
T

1T
1+

x x= , we deduce that Xm can also be computed as a function of image 

coordinates x and sensor parameter .

2.2 Projection of lines 

Let L be a 3D straight line in space lying on the interpretation plane which contains the 
principal projection center M (see Figure 1). The binormalized Euclidean Plücker 

coordinates (Andreff et al 2002) of the 3D line are defined as:
TT T

L = h u h . The unit 

vectors ( h h h )x y z
Th =  and x y z( u u u )Tu =  are respectively the orthogonal vector 

to the interpretation plane and the orientation of the 3D line L and are expressed in the 
mirror frame Fm. h is the distance from L to the origin of the definition frame. The unit 

vectors h  and u  are orthogonal, thus verify 0
T

h u = . If the 3D line is imaged with a 

perspective camera then the unit vector h  contains the coefficient of the 2D line l in the 
image plane, i.e the homogeneous coordinates x of the perspective projection of any world 
point lying on L verifies: 

0-T T T(K h) x l x= =  (4) 

If the line is imaged with a central catadioptric camera then the 3D points on the 3D line L
are mapped into points x in the catadioptric image lying on a conic curve: 

1 0T T Tx K K x x xi
− − = =  (5) 

Where 1TK Ki
− −=  and: 

2 2 2h - (1-h ) h h (1- ) h hx y x y x z
2 2 2h h (1- ) h - (1-h ) h hx y y x y z

2h h h h hx z y z z

∝
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2.3 Polar lines 

The quadratic equation (5) is defined by five coefficients. Nevertheless, the catadioptric 
image of a 3D line has only two degrees of freedom. In the sequel, we show how we can get 
a minimal representation using polar lines. 
Let  and A be respectively a 2D conic curve and a point in the definition plane of . The 
polar line l of A with respect to  is defined by l A. Now, consider the principal point 
Oi =[u0 v0 1]T=K[0 0 1]T and the polar line li of Oi with respect to i : li i Oi , then: 

[ ]1 1 0 0 1
TT Tl K K O K K Ki i

TK h

− − − −∝ Ω = Ω

−∝
 (6) 

Moreover, equation (6) yields: 
TK lih TK li

=  (7) 

It is thus clear that the polar line li contains the coordinates of the projection of  the 3D line L
in an image plane of an equivalent (virtual) perspective camera defined by the frame Fv = 
Fm (see Figure 2) with internal parameters chosen equal to the internal parameters of the 
catadioptric camera (i.e Kv = Kc M). This result is fundamental since it allows us to represent 
the physical projection of a 3D line in a catadioptric camera by a simple (polar) line in a 
virtual perspective camera rather than a conic. Knowing only the optical center Oi, it is thus 
possible to use the linear pin-hole model for the projection of a 3D line instead of the non 
linear central catadioptric projection model. 

3. Scaled Euclidean reconstruction 

Several methods were proposed to obtain Euclidean reconstruction from two views 
(Faugeras et al 1988}. They are generally based on the estimation of the fundamental matrix 
(Faugeras et al 96) in pixel space or on the estimation of the essential matrix (Longuet and 
Higgins 1981} in normalized space. However, for control purposes, the methods based on 
the essential matrix are not well suited since degenerate configurations can occur (such as 
pure rotational motion). Homography matrix and Essential matrix based approaches do not 
share the same degenerate configurations, for example pure rotational motion is not a 
degenerate configuration when using homography-based method. The epipolar geometry of 
central catadioptric system has been more recently investigated (Geyer et al 2003, Svoboda 
et al 1998). The central catadioptric fundamental and essential matrices share similar 
degenerate configurations that those observed with conventional perspective cameras, it is 
why we will focus on homographic relationship. In the sequel, the collineation matrix K and 
the mirror parameter  are supposed known. To estimate these parameters the algorithm 
proposed in Barreto et al 2002 can be used. In the next section, we show how we can 
compute homographic relationships between two central catadioptric views of co-planar 
points and co-planar lines. 
Let R and t be the rotation matrix and the translation vector between two positions Fm and 

*Fm of the central catadioptric camera (see Figs. 1 and 2). Consider a 3D reference plane ( )
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given in *Fm  by the vector T= [n* -d*], where n* is its unitary normal in *Fm  and d* is the 

distance from ( ) to the origin of *Fm .

Figure 1. Geometry of two views, the case of points 

Figure 2. Geometry of two views, the case of lines 
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3.1 Homography matrix from points 

Let X be a 3D point with coordinates X = [X Y Z]T with respect to Fm and with coordinates 

X = [X*  Y*  Z*]T with respect to *Fm .  Its projection in the unit sphere for the two camera 
positions is: 

[ ]-1 1( + ) X Y Z T
mX x= =  and  

** *-1 * * *1( + ) X Y Z
T

mX x= =

Using the homogenous coordinates [ ]X Y Z H TX = and , we can write: 

[ ] [ ] *-1
3( + ) 0x I X R t Xρ = =  (8) 

The distance d(X, ) from the world point X to the plane ( ) is given by the scalar product 
** .T Xπ  and: 

** * * *-1 * * *d( , ) ( + ) . d HTX n xπ = −

As a consequence, the unknown homogenous component H* is given by: 

* *-1 * *
** *

* *

( + ) d( , )H = .
d d

T Xn x π= −  (9) 

The homogeneous coordinates of X with respect to *Fm  can be rewritten as: 

** * *-1 *
3 1 3( + ) Ï 0 + 0 H

T
xX x= ϕ  (10) 

By combining the Equations (9) and (10), we obtain: 

[ ]* * *-1 *
3( + ) 0 +

*TX I Ax b= η  (11) 

Where

3 *d

T*
* nA = I  and *

*

d( , )
d

T

1x3
Xb 0 π= −

According to (11), the expression (8) can be rewritten as: 

*-1 * *-1( + ) ( + ) .x H x t= + α  (12) 

With  *
*d

TtH R n= +  and *

d( , )
d
X πα = − . H is the Euclidean homography matrix written as a 

function of the camera displacement and of the plane coordinates with respect to *Fm . It has 
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the same form as in the conventional perspective case (it is decomposed into a rotation 
matrix and a rank 1 matrix). If the world point X belongs to the reference plane ( ) (i.e  = 0) 
then Equation (12) becomes: 

*
x Hx∝  (13) 

Note that the Equation (13) can be turned into a linear homogeneous equation
*

0x Hx× =
(where x denotes the cross-product). As usual, the homography matrix related to ( ), can 
thus be estimated up to a scale factor, using four couples of coordinates ( )*;k kx x ,   k= 1 ... 4, 
corresponding to the projection in the image space of world points Xk belonging to ( ). If 
only three points belonging to ( ) are available then at least five supplementary points are 
necessary to estimate the homography matrix by using for example the linear algorithm 
proposed in (Malis et al 2000). From the estimated homography matrix, the camera motion 

parameters (that is the rotation R and the scaled translation * *dd

tt = , and the structure of the 

observed scene (for example the vector n*) can thus be determined (refer to (Faugeras et al 

1988).   It can also be shown that the ratio *

ρσ =
ρ

 can be estimated as follow: 

*

** 1 *
*

* 1 *

( )(1 )
( )

T
T

T Td

n xn Rt
n R x

−

−

ρ η + ξσ = = +
ρ η + ξ

 (14) 

This parameter is used in our 2 1/2 D visual servoing control scheme from points. 

3.2 Homography matrix from lines 

Let L be a 3D straight line with binormalized Euclidean Plücker coordinates h
TT T

h u

with respect to Fm and with coordinates 
* * *h

TT T
h u   with respect to *Fm . Consider that 

the 3D line L lies in a 3D reference plane ( ) as defined below. Let X1 and X2 be two points in 
the 3D space lying on the line L. The central catadioptric projection of the 3D line L is fully 
defined by the normal vector to the interpretation plane h . The vector h  can be defined by 

two points in the 3D line as 1 2

1 2

X Xh
X X

×=
×

. Noticing that * * 1
1 1det( ) THX H H X H− −

× ×
=

( *
1HX

×
being the skew-symmetric matrix associated to the vector *

1HX ) and according to (3) 

and (13), h can be written as follow: 

* *
1 1

* *
1 1

det( ) TH H X Xh
X X

− ×∝
×

 (18) 
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Since
* *

* 1 1
* *
1 1

X Xh
X X

×=
×

 is the normal vector to the interpretation plane expressed in the 

frame *Fm , the relationship between two views of the 3D line can be written as: 

*Th H h−∝  (15) 

The expression of the homography matrix in the pixel space can be derived hence using the 
polar lines. As depicted below, each conic, corresponding to the projection of a 3D line in the 
omnidirectional image, can be explored through its polar line. Let il  and *

il  be the polar 
lines of the image center Oi with respect to the conics iΩ and *

iΩ  respectively in the two 

positions Fm and  *Fm  of the catadioptric camera. From equation (6), the relationship given 
in equation (15)  can be rewritten as: 

*T
i il G l−∝  (16) 

Where 1 * 1
*( )

d
TtG KHK K R n K− −= = + . As in the case of points the homography matrix 

related to ( ) can be linearly estimated.  Equation (16) can be rewritten as: * 0T
i il G l−× =  and 

G can thus be estimated using at least four couples of coordinates ( *( , )ik ikl l , k=1 ... 4). The 
homography matrix is then computed as 1K HK G− = .  From H, the camera motion 

parameters (that is the rotation R and the scaled translation * *dd

tt = , and the structure of the 

observed scene (for example the vector n*) can thus be determined.   It can also be shown 

that the ratio *

hr=
h

(ratio of the lines depth) can be computed as follow: 

*

* *
*

* *

hr= (1 )
h

T T
iT T

d T
i

n K l
t R n

Rn K l
×

= +
×

 (17) 

These parameters are important since they are used in the design of our control scheme with 
imaged lines. In the next section, we propose a vision control scheme which allows to fully 
decouple rotational and translational motions. 

4. Control schemes 

In order to design an hybrid visual servoing scheme, the features used as input of the 
control law combine 2D and 3D informations. We propose to derive these informations from 
imaged points or polar lines and the homography matrix computed and decomposed as 
depicted in the last section. Let us first define the input of the proposed hybrid control 
scheme as follow: 

TT T
vs s sω=  (18) 
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The vector vs depends of the chosen image features. The vector sω  is chosen as s uω = θ
where u and  are respectively the axis and the rotation angle extracted from R (i.e the 
rotation matrix between the mirror frame when the camera is in these current and desired 
positions). The task function e to regulate to 0 is then given by:  

* *
*

*
v v v vs s s s

e s s
s s uω ω

− −
= − = =

− θ
 (19) 

where s* is the desired value of s. Note that the rotational part of the task function  can be 
estimated using partial Euclidean reconstruction from the homography matrix derived in 
Section 3). The exponential convergence of e can be obtained by imposing e e= −λ , the 
corresponding control law is:  

1 *( )L s s−τ = −λ −  (20) 

where
TT Tvτ =  is the central catadioptric camera velocity (v and  denote 

respectively  the linear and angular velocities) ,   tunes the convergence rate and L is the 
interaction matrix which links the variation of feature vector s  to the camera velocity 
s L= τ .
The time derivative of s uω = θ  can be expressed as a function of the camera velocity as:  

[ ]3
d( ) 0

dt
u Lω

θ = τ

Where Lω is given in (Malis et al 1999): 

[ ] [ ]2
3

2

sin( )1
2 sin

2

L I u u
c

ω × ×

θ θ= − + −
θ

 (21) 

Where ( ) ( )sinsin c θ
θ =

θ
 and [ ]u ×  being the antisymmetric matrix associated to the rotation 

axis u.

4.1 Using points to define vs
To control the 3 translational degrees of freedom, the visual observations and the ratio 
expressed in (14) are used: 

[ ]Tx yvs =  (22) 

Where x and y are the current coordinates of a chosen catadioptric image point given by 
Equation (1), log( )δ = ρ . The translational part of the task function is thus: 

T* * *x-x y-yv ve s s= − =  (23) 
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Where *log log( )ρΓ = = σ
ρ

. The first two components of *
v vs s−  are computed from the 

normalized current and desired catadioptric images, and its last components can be 
estimated using Equation (14).  
 Consider a 3-D point X, lying on the reference plane , as the reference point. The time 
derivative of its coordinates, with respect to the current catadioptric frame Fm, is given by: 

[ ]3X I X ×= − τ  (24) 

The time derivative of vs can be written as: 

v
v

ss X
X

∂=
∂

 (25) 

With:

2 2

2 2
2

2 2 2

Z+ (Y +Z ) XY -X( + Z)
1 - XY Z+ (X +Z ) -Y( + Z)

(Z+ )
X(Z+ ) Y(Z+ ) Z(Z+ )

vs
X

∂ =
∂

By combining the equations (24), (25) and (14), it can be shown that: 

[ ]vs A B= τ  (26) 

With
2 2

x
x

x
2 2

x
x*

x

x x x

1+x (1- ( + ))+y- xy x
+

1+y (1- ( + ))+x1 xy - y
+

x y ( -1)

A = and

2 2
x

x
2 2

x

x

(1+x ) - yxy y
+

(1+y ) - x -xy -x
+
0 0 0

B =

Where:  2 2 2
x= 1+(1- )(x +y )  and

2 2 2 2 2

x 2 2 2

(1- )(x +y )+
=

x +y
+

η
+

. The task function e (see Equation 

(19)) can thus be regulated to 0 using the control law (Equation (20)) with the following 
interaction matrix L:

30
A B

L
Lω

=  (27) 

In practice, an approximated interaction matrix L̂  is used. The parameter *ρ   can be 
estimated only once during an off-line learning stage. 
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4.2 Using imaged lines to define vs
To control the 3 translational degrees of freedom with imaged lines, the chosen visual 
observation vector is: 

[ ]T
1 2 3log(h ) log(h ) log(h )vs =  (28) 

Where 1h , 2h and 3h  are the depth of three co-planar lines. From the time derivative of the 
line depth expressed as a function of the camera velocity (Andreff et al 2002), given 
by kh ( )T

kku h v= × , it can be shown that:  

k
3

k

d(log(h )) 1 ( ) 0
dt h

T
kku h v= ×  (29) 

According to (6) and (29), the time derivative of the vector vs  is thus given by:  

[ ]T
v 3L 0vs = τ

Where:

11 1 1

22 2 2

3 33 3

h 0 0 ( )

0 h 0 ( )

( )0 0 h

T T T
i i

T T T
v i i

T TT
ii

K l u K l

L K l u K l

u K lK l

×

= ×

×

 (30) 

 Note that the time derivative of vs does not depend of the camera angular velocity.  It is 
also clear that vL  is singular only if the principal point M of the mirror frame lies in the 3D 
reference plane ( ). The task function e can thus be regulated to zero using the control law 
(20) with the following square block-diagonal interaction matrix:  

0
0

vL
L

Lω

=  (31) 

As can be seen on equation (30), the unknown depth hi and the unitary orientations ui with 
respect to the catadioptric camera frame have to be introduced in the interaction matrix. 

Noticing that
* *

( )/i i i iiu h Rh h Rh= × ×  and using equation (6), the orientation can be 

estimated as follow: 

*

*

T T
i i

T T
i i

K l RK lu
K l RK l

×=
×
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Furthermore, if the camera is calibrated and iĥ  is chosen to approximate hi, then it is clear 

that 1ˆ
v vL L− is a diagonal matrix with i

i

ĥ
h

for i=1, 2, 3 as entries. The only point of equilibrium 

is thus s* and the control law is asymptotically stable in the neighbourhood of s* if iĥ  is 

chosen positive. In practice, an approximated matrix * 1L̂ −  at the desired position is used to 
compute the camera velocity vector and the rotational part of the interaction matrix can be 
set to 1

3L I−
ω =  (Malis et al 1999). Finally, the control law is thus given by: 

** 1

3

ˆ 0
0

v vv s sL
uI

− −
τ = −λ

θ
 (32) 

5 Results 

5.1 Simulation Results 

We present now results concerning a positioning task of a six degrees of freedom robotic 
arm with a catadioptric camera in eye-in-hand configuration.  The catadioptric camera used 
is an hyperbolic mirror combined with a perspective camera (similar results are obtained 
with a catadioptric camera combining a parabolic mirror and an orthographic lens, these 
results are not presented in this paper). From an initial position, the catadioptric camera has 
to reach the desired position. This means that the task function (refer to equation (19)), 
computed from the homography matrix between the current and desired images, converges 
to zero. To be close to a real setup, image noise has been added (additive noise with 
maximum amplitude of 2 pixels) to the image and the interaction matrix is computed using 
erroneous internal camera parameters. The first simulation concerns imaged points while 
the second simulation concerns imaged lines. 

5.1.a Imaged points 

The initial and desired attitudes of the catadioptric camera are plotted in the Figure 3. This 
figure also shows the 3-D camera trajectory from its initial position to the desired one.  
Figure 3 shows the initial (blue *) and desired (red *) images of the observed target. It shows 
also the trajectory of the point (green trace) in the image plane (the controlled image point 
has a black trace trajectory). The norm of the error vector is given in Figure 4(b).  As can 
been seen in the Figures 4(c) and 4(d) showing the errors between desired and current 
observation vectors the task is correctly realized. The translational and rotational camera 
velocities are given in Figures 4(e) and 4(f) respectively. 

5.1.b Imaged lines 

Figure 2 shows the spatial configuration of the 3D lines as well as the 3D trajectory of the 
central catadioptric. The images corresponding to the initial and desired positions are 
shown by figures 5(c) and 5(d). These figures show the projected 3D lines (conics) and the 
associated polar lines.  The trajectories of the conics and of the corresponding polar lines in 
the image plane are given in Figures 5(a) and 5(b) respectively. These trajectories confirm 
that the initial images (conics and polar lines) reach the desired images. Figures 5(e) and 5(f) 
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show respectively the translational and rotational velocities of the catadioptric camera. As 
shown in Figures 5(g) and 5(h), the error vector e between the current and desired 
observation vectors are well regulated to zeros, and thus the positioning task is correctly 
realized. 

Figure 3. 3D trajectories of the catadioptric camera [meters]: (left) the case of points, (right) 
the case of lines 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. (a) Trajectories in the image of the target points [pixels]. (b) norm of the error 
vector, (c) error vector: [meters], (d) rotation vector [rad], (e) Translational velocity [m/s], (f) 
rotational velocity [rad/s] 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 5. Visual servoing with para-catadioptric camera: (a) initial image, (b) desired image 
(c) trajectory of the conics in the image plane, (d) trajectory of the polar line, , (e) translation 
velocities [m/s], (f) rotational velocities [rad/s],  (g) u  errors [rad], (h) *

v vs s−  vector errors 
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5.1 Experimental Results 

The proposed control law has been validated on a six d-o-f eye-to-hand system (refer to 
Figure 6). Since we were not interested in image processing in this paper, the target is 
composed of white marks (see Figure 6) from which points or straight lines can be defined. 
The coordinates of these points (the center of gravity of each mark) are extracted and 
tracked using the VISP library (Marchand et al 2005). The omnidirectional camera used is a 
parabolic mirror combined with an orthographic lens ( =1). Calibration parameters of the 
camera are: f.( - )= 161 and the coordinates of the principal point are [300 270]T. From an 
initial position the robot has to reach a desired position known as a desired 2D observation 
vector s*. Two experiments are presented. In the first one whose results are depicted in 
Figure 7, the point-based visual servoing has been used.  The error on the visual features is 
plotted on Figure 7(e) while the camera velocities are plotted on Figure 7(c)-(d). These 
results confirm that the positioning task is correctly achieved. The second experiment has 
been conducted using the line-based visual servoing. The corresponding results are depicted 
on Figure 8. We can note that the system still converges.  

Figure 6. Experimental setup : eye-to-hand configuration 
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(a) (b) 

(c) (d) 

(e)

Figure 7. Visual servoing with lines: (a) initial image, (b) desired image and trajectory of the 
conics in the image plane (c) translational velocities [m/s], (d) rotational velocities [rad/s], , 
(c) *

v vs s−  and u  errors 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 8. Visual servoing with lines: (a) initial image, (b) desired image and trajectory of the 
conics in the image plane, (c) *

v vs s− , (d) u  errors [rad]  (e) translational velocities [m/s], (f) 
rotational velocities [rad/s] 
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6. Conclusion 

In this paper hybrid vision-based control schemes valid for the entire class of central 
cameras was presented. Geometrical relationship between imaged points and lines  was 
exploited to estimate a generic homography matrix from which partial Euclidean 
reconstruction can be obtained. The information extracted from the homography matrix 
were then used to design vision-based control laws. Results with simulated data confirmed 
the relevance.  In future work, the robustness and stability analysis with respect to 
calibration errors must be studied. 
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1. Introduction 

This chapter exposes an OCR (Optical Character Recognition) procedure able to work with 
very high speeds. 
The architecture of the pattern recognition algorithm we present here includes certain 
concepts and results which are developed in previous publications [3,4]. We consider a 
production line of a beverage canning industry where cans with faulty imprinted use date 
or serial number have immediately to be discharged from the line. 
The problem is well-known in the industrial scene. A code or a set of characters is registered 
on the surfaces (can bottoms) to very high speed. The registration can fail, can take place 
only partially, or can print wrong something. It is important to know with certainty what 
has happened. The most general solution is to read what has been printed immediately after 
print itself.  
Surfaces are metallic (tinplate/aluminium) can bottoms for our particular case and the code 
denotes the limit of the use of the product (beer or similar). 

Figure 1. The scheme of the goal 
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Our goal is to build a capable application to process 120,000 cans per hour (35 cans per 
second). Nowadays, there is not application on the market which is able to manage this 
speed.
Therefore, our purpose has to do with an OCR that is confronted to two challenges: 
1. Extraction of characters registered on a difficult surface. 
2. Processing to very high speed. 
Our keys to approach the problem have been: 
1. Capable hardware 
2. Domain restrictions 
3. Intensive calibration 
4. Parallel architecture 
5. A progressive and aggressive reduction process of the interest area 
6. Simple operations in integer arithmetic  
7. Two independent tasks: Validation and Traineeship 
Here is a brief explanation of these keys. 
1. Capable hardware: The critical requirements are that the system is in fact invariant from 

its position during the text analysis of nearly 30.000 cans per minute in real time. The 
system has to be reliable and it relies on specific hardware. Thus, a high speed 
acquisition camera, an efficient acquisition board, a strong multiprocessing system and 
a considerable bandwidth for main memory load are the basic requirements.  

2. Domain restrictions: A specialized environment which is very well known and 
restricted diminishes the number of contingencies to consider and allows therefore 
making presumptions easily. View section [1] and section [2]. 

3. Intensive calibration: There are two types of calibration of the system. The first type is 
to focus you on guaranteeing an enough quality of image for the treatment. It affects 
mainly physical parameters of the system. The second type has to do with the training 
of the system. The system should be trained with expected shapes for comparison. 

4. Parallel architecture: Use intensive of multithread at several architecture layers in 
strong multiprocessing system. 

5. A progressive and aggressive reduction process of the interest area: Reducing the input 
domain contributes to reduce the time of processing. 

6. Simple operations in integer arithmetic: Sum, subtraction, multiplication of integers, 
and integer division are the absolutely dominant operations.  
In computers of general purpose, the integer arithmetic unit is faster than the float 
arithmetic unit. All procedures described in this chapter disregard float arithmetic for 
validation computation. The real essential operations are out side of the continuous 
cycle of validation.  

7. Two independent tasks: Validation and Traineeship. Only The Validation Stage is 
described in this paper. However there is another stage in where the knowledge base is 
built.  

2. Visual Scenario 

We will work at an industrially dedicated environment; therefore the scene of events should 
be restricted. The reality will be mapped to two-dimensional matrixes with values between 
0 - 255 representing different levels of grey. The possible states can be anticipated and listed: 
They are not too numerous neither very complex.  
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1. There can be nothing but cans and “background” in our field of vision. 
2. The “background” has fixed and unchangeable visual characteristics [very dark colour]. 
3. There is NO background inside the border of a can. 
4. Outside the border of a can there can only be background or other cans, but nothing 

else. 
We are only interested in processing a single can within the frame of our camera. Therefore 
the physical acquisition platform will reinforce the presence of a single clean can in each 
capture. On the other hand, the hardware/software system will have to guarantee that no 
can will be lost during acquisition: all can processed by the installation will be processed too 
by our system. 

Figure 2. Typical acquisition from camera 

3. System Preconditions 

The code is associated to a single orientation and processing direction. In order to compare 
the expected code with the acquired code during validation both codes must have the same 
orientation and processing direction. The question is: How do we know the orientation and 
processing direction of the acquired code? 
We have the following facts in our favour: 
1. Once the print head and the acquisition source camera are fixed, orientation and 

processing direction are fixed for all cans. 
2. The print head and the camera can be freely rotated if it is more convenient to our 

purposes. There are no other factors to consider except our own satisfaction. 
3. Due to the previous fact, we can force to have an orientation and processing direction 

for the code. Therefore, these are known from the beginning before processing starts. It 
is not necessary to make a specific computation to get them. 

As we will see soon, trying to have the orientation parallel to the natural vertical and 
horizontal axes will make the computation easier. This is what we are trying to get.  

4. Elliptical Histograms Algorithm 

The basis of algorithm of the elliptical histograms is analogous to the biological receptive 
field concept. The computation input field has a specialized shape that maximizes its 
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perceptiveness to certain stimuli. A purposeful task can be the simple stimulus presence 
detection. 
The stimulus is the can. The task is to determine if a can is in the vision field or not. If so, 
estimate the position of its centre within the vision field. 
The facts which support our procedure are: 
1. The cans always are shown up at the vision field like can bottoms. 
2. The can bottoms are always brighter than the background. 
3. The can bottoms are nearly circular. 
4. The can bottoms run a restricted and predictable trajectory inside the vision field. 
The idea is to look for any measure that has maximum or minimum values according to fact 
that the can is present or absent. Arbitrary noise in the image should not provoke false 
positives or false negative easily. On the other hand, the measure should be computed fast. 
The histogram is a classification and count of levels of grey steps. Provide the distribution of 
colour of a collection of points. It is a very fast operation because only it implies queries, 
comparisons and sums. 
The fact 2) establishes that the presence/absence of a can modifies the distribution of color. 
Therefore, the fact 2) determines the sensibility to histograms. 
We should look for an optimal collection of points that provides very different histograms 
according to the fact that the can is present or not. The collection of points should be 
efficient and avoiding unnecessary queries. 

Figure 3. The receptive field shape and queries position 

The fact 3) provides us what kind of shape should be looked for inside the image.  
The circular shape is suitable like the collection of points of search. The receptive field is 
defined as a circle (i.e a circular line or circumference). 
A sufficiently “bright” histogram for a particular receptive field can give only a hint that 
there is a can whose centre is also close to the centre of the histogram circle. So, it is an 
ON/OFF receptive field.  
Besides, it is established in the section [2] that the unique objects that would invade the 
vision field are cans. Only the noise would be able to cause troubles. The shape circular is 
sufficient complex to distinguish between cans and shapes of luminous noise for the 
majority of cases. 
The procedure would be: 
1. A circle which has not been processed yet is chosen. If there is no not-processed 

circumference then it is declared that there are no cans in the image and we jump to 
step 5. 

2. The histogram for that circular line is computed. 
3. If the histogram is enough bright then it is declared that a can has been found and we 

jump to step 5. 
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4. Otherwise the circle is marked like processed and we return to step 1. 
5. Status of the image declared! 
Discussing the general idea, it gives us some hints to optimize  making good use of the 
restrictions of the environment: 

Figure 4. A can could be located at any position sweeping the image with the described 
receptive fields 

Figure 5.  The nature of the chain of can filling imposes that cans move around in a 
restricted line so the search can be restricted to exploration of that axis of line 
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A new principle is: 
Once the previous location of a circumference in a previous frame is known we can 
determine which is the next more-probable-position for relocating the can. The search stops 
immediately when the can is found.  Therefore it will be tracked those circumferences that 
correspond to those positions in decreasing probability order. 

Figure 6.  Processing the circles with greater probability of being active first can improve the 
speed

Why elliptical histograms? The frames produced from the camera are distorted due to the 
natural limitations of the quality of optics. This distortion does not affect of appreciable way 
the readability of the code. But the cans leave the circular shape as they get close to the 
boundaries of the image. 

Figure 7.  Sweeping with ellipses 
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a

b

Figure 8. This gradual flattening is contemplated by the procedure turning the 
circumferences in ellipses. An additional advantage is that fewer points are processed 

Can Counter 
The can count is made using ellipse activation. There are three important facts: 
1. The motion direction of the cans is previously well known (from left to right, or else, 

from right to left). 
2. The ellipse activation order should correspond to that motion direction. 
3. When a new can comes into scene, the ellipse activation order breaks the pattern of 

motion. 
The can counter counts the breakings of fact 3). 

1 2 3 4 5

Figure 9.  Natural order of ellipse activations 

The normal can movement follows the motion sequence [1, 2, 3, 4, 5]. 
A mistake in the motion sequence (For example, [1, 2, 3, 5, 4]) means that a new can has 
come in the vision field of the camera completely. 

5. Thickening 

The pre-process of thickening improves the general quality of the image with a cheaply 
computer cost. It simplifies superfluous details of the image without harming the readability 
of the code.  
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Its main advantage is that it provides a code with less fragmented and more consistent 
characters.
Its main disadvantage is that characters can stick erroneously among themselves.   
The procedure involves applying a limited convolution the winning ellipse of the algorithm 
of elliptical histograms. 

Figure 10. Image after thickening and image before thickening 

Figure 11. This is the convolution mask. Thence there are no complex implicated operations 

6. Segmentation by flooding 

The reduction of the number of queries is the reason that justifies the application of this 
technique. A query is the reading/writing of a pixel of the actual image. 
It is possible to go through every pixel of the image checking if they are part of the code. A 
systematic tour will give us the best results. However, it’s very important to avoid 
unnecessary operations/queries. The Flooding Techniques are one of the possible solutions 
to use. 
The mechanism of the flooding technique main goal (also known as Pixel Progressive 
Addition Method) is to obtain which is result as the systematic tour, but with less 
operations/queries.
It’s use should be success full because it depends on two easily contrastable principles: 
1. The majority of queries will give a negative result concerning their belonging to the 

code. 
2. The queries results with positive code are those positions which have only a short-

distance from each other positions. 
The flooding as well as the segregation of points that are part of the code from those points 
that are not, groups the located points of code in useful sets. The pixels that form the main 
semantic object scene (the code) can be grouped in sub-semantic objects (characters). 
Therefore, this is the decisive step of transforming pixels into abstract entities (characters of 
code). 
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Here is the procedure: 
1. Select a set of flooding seeds. The flooding seeds are driven queries with a  higher 

probability of finding a code pixel. The selections of seeds are based on some heuristic 
knowledge. 

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 13.  Randomly seeds without ink 

2. Choose an not-yet-discarded seed, if there is no one available go to exit. If the seed has 
not yet been marked as visited, do it and go to step 3. Otherwise discard it and repeat 
step 2. 

3. If there is no ink in the seed, declare it as sterile and discard it .Return to step 2. 
Otherwise go to step 4. 

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 14.  A seed with luck! 

4. Open up a flooding point. The seed is declared as the flooding starting point. 
5. Look up the immediate proximity neighbours marking all performed queries like 

visited neighbours. Go to step 6. 
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0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 15.  Inspecting neighbours 

6. Declare all neighbour marked with ink as a flooding point.  Return to step 5. If all 
neighbours with ink have been processed, go to step 7. 

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 16. Inspecting neighbours of neighbours 

7. Close the current flooding. Discard the current flooding if:  
• It has too many collected points (too big to be a character, so it is just noise). 
• it is too small to be a character (it is noise too) . 

Go to step 2. 
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0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 17.  The flooding task has concluded 

8. Flooding Completed 

7. Grouping 

The main goal of Grouping is to distribute the flooded zones got in the previous stage 
between the real characters of the code. It is composed of three steps. 

7.1 Division in Bands 

This technique tries to separate the lines of printed code. Besides this, you can get additional 
useful information for noise suppression. The requirement is that the orientation of the 
expected code has to be known previously. This condition be comes true because it was 
established in the section [2]. 
The purpose of this technique is to divide the image in bands. A band is a longitudinal 
section of an image which is parallel to the code orientation axis. This technique tries to 
contain each of the different processed code lines in bands. Therefore, a band can be empty 
(or filled with noise) or contains a code line. Bands are described by their boundaries.  
Ideally, the band boundaries are straight lines. However, a band boundary can not cut 
flooding zones. So it has to surround the flooding zones in an optimal way. Band 
boundaries have their starting points separated at a certain distance from each other, and 
should not cross between them.  
The speciality of the technique consists of taking advantage of the interlineations code space. 
It is hope that the interlineations code space could be easily perceived by a band boundary.  
The band boundaries are generated by the following procedure: 
1. Assume an origin: The beginning of the boundary, and the direction of movement. 
2. Check whether the end of the image has been reached or if there has been a cross 

between boundaries (a band boundary can never cross another boundary). If the check 
is positive, exit. 

3. Apply a collision direction test with a flooded zone. 
3.1. If the test is negative, advance a step in a straight line (direction of movement)  
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3.2. If the test is positive we surrounded the flooded zone, choosing the direction of 
movement with less resistance. If there are several options of movement with equal 
resistance, we choose one randomly.  

4. Return to step 2. 

7.2 Splitting Flooded Zones 

The use of the term “super-zone” is used to designate an oversized flooded zone. The 
oversize is exposed according to a criteria related the maximal size of the expected 
character. A super-zone indicates an anomaly. Here is the list of probable anomalies whose 
symptom causes the final identification of a super-zone: 
1. Noise. 
2. Two or more characters have merged among themselves in an error. 
3. One or more characters have been merged to noise. 
4. A severely deformed character.  
In those cases the super-zone should be decomposed in sub-zones. Decomposition of super-
zone is made by applying the same flooding algorithm described in chapter [5] but the input 
field is much more restrictive. The new input field will be the same image but with an 
inferior level of thickening. 
The thickening defragment the image hiding their details [4]. Generally this is fine because 
the excess of details penalizes the general processing. Therefore, ignoring them normally is 
advantageous. Unfortunately some details that are inadvertently suppressed are critical at 
times. It is possible to recover the lost details making use of images with inferior levels of 
thickening.  
Here is the procedure: 
1. Only the points of coordinates that constitute the located super-zone will be processed. 

The grey levels will be recovered from a less-thickened image. 
2. The segmentation by flooding will be applied like if is described in section [5] 

(Segmentation by Flooding). As a result, one or more flooded zones will be created. 
3. The points of the super-zone which are not yet assigned by the previous step will be 

associated to the new zones according to some criteria like nearest neighbourhood. 
4. If the criterion of step 3 is unable to reassign some points to a new specific flooded 

zone, these points will not be assigned evermore. The point will be labelled as 
background. 

5. This set of new flooded zones (composed by one or more zones) will finally replace the 
previous super-zone.  

6. If any of these new flooded zones comes out to be a new super-zone, it will be labelled 
as noise. So the procedure will not be applied recursively. 

7.3 Merging flooded zones 

In general two flooded zones can be merged if they overlap them self. 
Let us define the rules of the overlay algorithm: 
1. Our domain will be discrete because the flooded zones that are defined as finite set of 

point with coordinates in a discrete space. The point coordinates of the flooded zones 
are expressed like Cartesian pair in the plane. 
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2. The overlapping dimension of a flooded zone is equal to the greatest distance between 
the projected points of the flooded zone on the perpendicular axis of the overlapped 
axis.

3. The traced segment between the borderline points of the overlap dimension is denoted 
as overlap segment of flooded zone. 

4. Two flooded zones are overlapped in relation to a suitable axis of overlay when it is 
possible to draw at least one parallel line to this axis that cuts its two overlap segments. 

5. The overlay property is applied equally to all implicated flooded zones.  
6. The overlay among flooded zones from different bands is always zero. 
7. A flooded zone can overlap with multiple flooded zones. 
8. The number of not-coincidental parallel lines of overlap is the dimensions of the 

overlay between two flooded zones. Even though the dimension of the overlay is equal 
for the two flooded zones, the degree of overlay of each flooded zone is the quotient 
among the fore mentioned dimension and the dimension of its overlapped axis. 

9. A flooded zone is included by another one that is overlapped by the first, if all its points 
are intersected by the overlapped rays. Two or more flooded zones can include 
themselves mutually. 

10. The distance among the overlap segment midpoints should not exceed a certain 
distance in order that the overlay will be accepted. 

Here is the procedure description: 
1. A table of overlay with the flooded zones is built.  

The overlay table is a collection of all degree of overlay between the existent flooded 
zones.  It is calculated confronting all the zones among themselves applying the 
described rules.  

The table construction require to establish the overlay axis perpendicular to the code 
orientation axis. 

Zone I Zone II Zone III Zone  IV … 
Zone I 0 %     

Zone II  0 %    
Zone III   0%   
Zone IV    0%  

…      

Table 1. Scheme of overlay table 

The intersection of row II and column III supply the degree of overlay of the zone II on zone 
III. 
2. The merging couples are recovered from table in strictly decreasing order of degree of 

overlay.
3. A merging is valid if the maximum size of the merged zone does not exceed the 

maximum size for a character. And the two most distant points of the merged zone do not 
exceed the limit of size for a character. 

Once a successful merging was made the overlay table is recalculated for this new zone. On 
the other hand, the two zones that have been merged are suppressed.  
The procedure is iterated. If no new fusions are possible, the procedure stops. 
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8. Validation 

The steps of validation are: 
1. Labels of Character  

It is possible to find the coordinates of the flooded codes in terms of the expected codes 
because it is known that the orientation and processing direction of the printing signs. 
We will label each flooded zone with the pair: (Line index, position of the character 
inside the line ). In this way (1, 4) means second line (Zero is the first), fourth character.   

2. Retrieval of expected character 
It is possible to recover the family of morphologies of the expected character of our base 
of morphologies of those characters learned by means of the described pair.  

Figure 18.  The steps for morphologies recovering 

3.  Comparison between expected characters and acquired characters 
First calculate the correlations of the acquired character against each one of the 
recovered morphologies. It is stops when finds a sufficiently seemed morphology. 

Figure.18.  The strongly-hoped inputs for matching 
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4. Merging with the next character if an error 
If not coincidences/similarities occurs then it is applied a merging among the acquired 
character with the following should be made. Perhaps code dispersion has happened. 
Repeat steps 3-4 with the new acquired character. If it is not possible we must go to the 
next obtained character but we should persist with the expected actual character. 

5. Policy of alerts 
If one or more expected characters are NOT found then they are NOT valid and we will 
declare NOT VALID. The policy of alerts, not described in this document,  will make a 
decision how to act. 

You must note: Templates are morphologic representations of the characters. The templates 
are processed and stored like rectangular bitmaps. The one bit marks presence of ink and 
the zero bit marks absence ink. A character has a set of associated morphologic templates 
called morphologies family. 

9. Conclusions and future work 

In this paper we studied a series of algorithms based on simple operations performed with 
fast arithmetic. The restriction on the used operations is due to the stress-producing requests 
of speed. Unfortunately, the obtained results prove that the series of algorithms mentioned 
IS NOT SUFFICIENT for the requirements. 
The problem results in that the processing time for each can is variable and sometimes it is 
excessive. This is due to the fact that each can can offer different challenges of process 
complexity. For example cans with a lot of noise generate more flooded zones, and the 
number of flooded zones enlarges the load of the process. Therefore, some cans are 
validated more slowly than other cans.   
It is not possible to delay the processing of every can. There can be no queues of processes of 
cans. It is important to manage of that the maximum time of processing per can does not 
exceed the safety time.[i.e. The time interval between the begin of recording a can and the 
begin of recording the next can]. 
The immediate future work will be implement multithreading versions of the series of 
algorithms. On the other hand, the algorithms could run simultaneously. This is possible if 
consecutive beers are processed at same time.  
In the following scheme, a biologically inspired architecture for this application is presented. 
The basic ideas of multichanneling in the visual tract are present. On the input image, a 
multiprocess task is first triggered to extract the area of interest where first text is to be 
located. Thus, a second multichannel analysis analysis the possible singularities in the text. 
The final validation consists of determining the coherence and plausibility of text 
syntactically and semantically. All these processes are independent and are separately 
operated. Thus, the labels {1}, {2}, {3} and {4} denote different stages within the same visual 
tract.
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1. Introduction 

Visual exploration of unknown environments is considered a typical and highly important 
task in intelligent robotics. Although robots with visual capabilities comparable to human 
skills (e.g. mushroom-picking robots or bird-viewing robots) are apparently unachievable in 
the near future, but the concept of robots able to search for known objects in unknown 
surroundings is one of the ultimate goals for machine vision applications. In the scenarios 
that are currently envisaged, the expectations should be realistically limited. Nevertheless, 
one can expect that a robot, after a visual presentation of an object of interest, should be able 
to “learn” it and, subsequently, to detect the same object in complex scenes which may be 
degraded by typical effects, i.e. partial visibility of the objects (due to occlusions and/or 
poor illumination) and their unpredictable locations. The purpose of this chapter is to 
propose a novel mechanism that is potentially useful (it has been confirmed by promising 
preliminary results) in such applications. 
Several theories exist explaining the human perception of objects (e.g. Edelman, 1997). Some 
researchers promote the importance of multiple model views (e.g. Tarr et al., 1997) others 
(e.g. Biederman, 1987) postulate viewpoint invariants in the form of shape primitives 
(geons). From all the theories, however, the practical conclusion is that vision systems 
detecting objects in a human-like manner should use locally-perceived features as the 
fundamental tool for matching the scene content to the models of known objects. 
The idea of using local features (keypoints, local visual saliencies, interest points, 
characteristic points, corner points – several almost equivalent names exist) in machine 
vision can be traced back to the 80’s (e.g. Moravec, 1983; Harris & Stephens, 1988). Although 
stereovision and motion tracking were initially the most typical applications, it was later 
found that the same approach can be used in more challenging tasks (e.g. matching images 
in order to detect partially hidden objects). A well-known Harris-Plessey operator (Harris & 
Stephens, 1988) was combined with local descriptors of detected points to solve object 
recognition problems in which local features from analysed images are matched against a 
database of images depicting known objects (e.g. Schmid & Mohr, 1995). The intention was 
to retrieve images containing arbitrarily rotated and partially occluded objects.  
Subsequently developed keypoint detectors address the issues of scale changes (this was the 
weakest point of the original detectors) and perspective distortions. Generally, to achieve 
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scale invariance of local features, computationally expensive scale-space approaches are 
used (e.g. Lowe, 2004; Mikolajczyk & Schmid, 2004). So far, no method is known that can 
scale-invariantly match local features using a one-size window for scanning images 
captured in arbitrarily changing scales. The perspective distortions are usually 
approximated by affine transformations (or even ignored altogether). This is acceptable 
since only relatively minor distortions are typically assumed. Stronger deformations are 
avoided by using multiple views (differing usually by 15-30 degrees) to model 3D database 
objects.
Our paper presents how to integrate  and expand selected ideas from the abovementioned 
theories and techniques into an alternative framework that could satisfy the practical 
requirements of robotic vision systems at lower computational costs than other currently 
existing solutions. Generally, we follow the fundamental concepts presented in previously 
published works (e.g. Huttenlocher & Ullman, 1990; Wolfson & Rigoutsos, 1997; Häusler & 
Ritter, 1999; Ulrich et al., 2003; etc.). In particular:  
1. Database objects are represented by 2D images. Multiple images of the same object are 

used if 3D transformations of the object are expected in the captured scenes, while a 
single image is needed if only 2D transformations are envisaged. 

2. Database objects are modelled as a set of locally computed features (keypoints) 
characterised by their descriptors. The geometric constraints of the set (i.e. length and 
orientation of vectors joining the keypoints) are also stored. 

3. Keypoints of the same categories are extracted from captured scenes. Subsequently, 
those keypoints are matched to the models of database objects. If a sufficient number of 
the keypoints are consistently (i.e. satisfying the geometric constraints of the model) 
matched to a certain model image, the corresponding database object is considered 
found in the scene. 

What makes our method novel is the definition of local features (keypoints). Therefore, the 
major sections of this chapter discuss the proposed keypoints and present exemplary results 
obtained using such keypoints. The actual object detection and/or localisation are only 
briefly mentioned since the methods used follow the algorithms published in our previous 
papers or papers of other authors.
Typically used keypoints are based directly (e.g. Harris & Stephens, 1988) or indirectly (e.g. 
Lowe, 2004; Mikolajczyk & Schmid, 2004) on derivatives of the intensity functions. Such 
keypoints have many advantages but certain disadvantages as well. For example, the 
scanning window over which the keypoints are computed should be resized according to 
the scale of objects present in the image. If the scale is unknown (which is the most typical 
scenario) additional computations and/or assumptions are necessary. Some authors use 
computationally intensive search for the optimum scale at which the current keypoint 
should be processed (e.g. SIFT detector in Lowe, 2004) while others propose a simplifying 
(but nevertheless justifiable for robotic application) assumption that only a few scales are 
used and the object would be identified when its distance to the capturing camera 
corresponds to one of those scales (e.g. Islam et al., 2005). An additional disadvantage of 
derivation-based keypoints is that some photometric transformations (e.g. excessively high 
contrasts) may distort the captured image to the point where the original differential 
properties of the intensities are lost while the visual content of the image is still readable. 
We propose keypoints based on the local structural properties of the images, i.e. the contents 
of scanning windows are approximated by a certain number of structures (parameterised 
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patterns). If the approximation if sufficiently accurate, a keypoint is built and characterised 
by the parameters describing this approximation. The fundamentals of such keypoints are 
presented in Section 2.  
In Section 3, we discuss how to use such approximation-based keypoints for object detection 
(including scale-invariance issues). It is shown that, in spite of using uniform scanning 
windows, objects at arbitrary scales can be matched (within a certain range of scales). 
Section 4 presents exemplary results of the proposed technique and briefly explains the 
further steps of object detection. Conclusions and additional remarks are given in Section 5. 

2. Approximation-based Keypoints 

2.1 Pattern-based Approximations 

Recently (in Sluzek, 2005) a method has been proposed for approximating circular images 
with selected predefined patterns. Although corners and corner-like patterns (e.g. junctions) 
are particularly popular and important, the method is applicable to any parameter-defined 
patterns (both grey-level and colour ones, though the latter are not discussed in this 
chapter).
We assume that a grey-level circular pattern is modelled by several configuration parameters 
and intensity parameters (as shown in exemplary patterns given in Figure 1). Typical 
patterns are specified by 2-3 configuration parameters and 2-3 intensities. The radius R of a 
pattern can be arbitrarily selected. Thus, if a configuration parameter is a length (e.g. β1 in 
Figure 1B, or β1 and β2 in Figure 1C) it should be measured both absolutely and relatively to 
the radius.

A                                      B                                       C                                       D 

Figure 1. Exemplary patterns defined in circles of radius R (configuration parameters 
shown)

Circular patterns are considered templates that would be matched to other circular images 
(or rather to circular windows of a larger image) in order to determine how well that image 
can be approximated by given patterns. In other words, the optimum values of the 
parameters should be found to identify the best pattern approximation. This idea (originally 
applied to edge detection) can be traced back to the 70’s (e.g. Hueckel, 1973). 
In our previous papers (e.g. Sluzek, 2005) it is explained how to build the optimum 
approximations for various template patterns (or, alternatively, how to determine that no 
such approximation exists) using locally computed intensity moments. For several patterns, 
the explicit solutions are given. For example, the orientation angle β2 of a corner 
approximation (see Figure 1A) is obtained from  
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β = ± ±2 01 10arctan2( , )m m  (1) 

while the angular width β1 is computed as  
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+
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For T-junctions (Figure 1D) β1 angular width and β2 orientation angle can found from  
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and
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where m10, m20, etc. are moments of the corresponding orders computed in the coordinate system 

attached to the centre of circular windows. 

The intensities of such approximations can be estimated using other moment-based expressions 

(details in  Sluzek, 2005).

Exemplary circular windows (containing actual corners, T-junctions and more random 
contents) are given in the top row of Figure 2. The bottom row shows the optimum corner or 
T-junction approximations. For some irregular images the approximations do not exist, i.e. 
the corresponding equations have no solutions. 

Figure 2.  Optimum approximations (using corner or T-junction patterns) for selected 
circular images of 15-pixel radius 
It can be straightforwardly proven that results produced by Eqs (1)-(4) are invariant under 
linear illumination changes, and that non-orientation configuration parameters (e.g. angular 
widths β1 in Figs 1A and 1D) are invariant under any 2D similarity transformation. 
Extensive tests have also indicated that the results are stable (unlike, for example, the corner 
approximations discussed by Rosin, 1999) under high- and low-frequency noise, image 
texturization and partial over- and under-saturation of intensities. The same level of stability 
has been confirmed for other circular patterns. 

2.2 Approximation-based Model Keypoints 

Examples in Figure 2 show that even if the approximation exists, there might be a significant 
visual difference between a circular image and its approximation. Thus, if we can measure 
the level of similarity between an image and its approximation, the optimum approximation 
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(i.e. the approximation with the highest similarity) indicates how accurately the pattern of 
interest is actually “seen” in the image. 
Alternative methods of quantifying similarity between an image and its pattern 
approximation have been given in past papers (Sluzek, 2005; Sluzek, 2006). Unfortunately, 
the complexity of both methods is as high as the complexity of building the approximations. 
It has been eventually found that highly satisfactory results can be achieved in a simpler 
way by comparing moments of circular images (these moment have to be computed 
anyway) and moments of their approximations (those moments can be immediately 
calculated from the parameters of the approximation). Thus, the similarity between a 
circular image I and its approximation AI can be quantified using one of the following 
similarity functions:

( ) ( ) ( )
( )α

− + − + −
= −

+ +
20 20 02 02 11 11

1
20 02 11

( , )
abs m ma abs m ma abs m ma

sim I AI K
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− + −
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+
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where mpq and mapq are moments of I and AI (respectively) and K, α are arbitrarily selected 
positive values. 

Figure 3. Top row: a sequence of windows moving across a high-quality corner image. Bottom
row: corresponding corner approximations and the similarity levels (for the last window the 
corner approximation does not exist) 
If at certain location an image contains a fragment similar to the pattern of interest, a high 
level of similarity between the content of a scanning window located there and its 
approximation is expected. However, a high similarity level would be found not only for the 
actual location but also for neighbouring locations. The similarity, nevertheless, reaches a 
local maximum at the location. Figure 3 illustrates this effect. 
Moreover, if an image contains a certain pattern, the similarity between the window content 
and the approximations exists for a certain range of radii of the scanning window and the 
approximations are consistent over this range of radii (instead, the scanning window may 
remain the same, but the image is resized correspondingly over the range of scales). An 
example showing such a consistency both for the configuration and intensity parameters for 
a selected fragment of a digital image (containing a T-junction) is given in Figure 4. 
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Thus, our proposal of the novel type of keypoints is based on the above discussion. 

Figure 4. Top row: a sequence of 15-pixel windows over a gradually enlarged image of a T-
junction. Bottom row: corresponding T-junction approximations and the similarity levels 
Definition 1 
For a given image, pixel (x,y) is (subject to additional requirements explained below) an 
approximation-based model keypoint (shortly model keypoint) defined by a circular pattern TP if 
for the scanning windows located at (x,y): 
1. TP pattern-based approximation exists for each radius R from a certain range (R1, R2).
2. The approximations have consistently similar parameters over the whole range of radii 

(R1, R2).
3. If several neighbouring pixels satisfying (1) and (2) exist, the model keypoint is located 

at the pixel where the similarity between the scanning windows and their 
approximations reaches a local maximum. 

Typically recommended additional requirements (introduced for practical reasons) are as 
follows: 
• Similarities between the window contents and the approximations should be 

sufficiently high (keypoints that inaccurately depict the pattern are less useful than the 
accurate ones). 

• Contrasts between intensity parameters of the produced approximation (see Figure 1) 
should exceed a predefined threshold (keypoints that can be hardly seen usually have 
no practical importance). For 256-level images, the recommended thresholds are in 15-
25 range. 

• The similarity functions can by additionally modified proportionally to the contrasts 
between intensities of the produced approximation (less accurate keypoints with better 
contrasts might be more important than poorly contrasted keypoints of high accuracy). 

• Pattern-specific constraints may exist. For example, the angular width of a corner 
approximation should not be too close to 180º (it becomes an edge then) or to 0º (it 
effectively becomes a line tip). 
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It should be noted that the proposed definition of approximation-based model keypoints is 
not limited by the proposed method of computing the approximations. In fact, the definition 
is applicable to any other technique where image fragments similar to selected patterns of 
interest are searched for. 
We propose to use the above-defined model keypoints for model images of the objects of 
interest. First of all, such keypoints are stable prominent features that are likely to be 
preserved in any other image that contains the same fragmnent of the object even if the 
viewing conditions are changed. Secondly, the number of such high-quality keypoints is 
usually limited (for a single pattern) even in complex objects. However, if several different 
patterns are used, the model image can still contain enough keypoints for a reliable 
detection under partial occlusions. Nevertheless, keypoint candidates from inspected 
images are matched to a limited number of potential counterparts (those of the same pattern 
only). Computational complexity of model keypoint detection is quite high because we have 
to examine each location using scanning windows in numerous scales covering the whole 
range (R1, R2). Although the moment calculations are reusable, the equations for parameter 
estimations should be solved separately for each radius. Since model-building operations 
are usually performed offline, this disadvantage is acceptable. In the next sub-section the 
issue of online keypoint detection is discussed. This would be important in a real-time 
search for objects of interest, i.e. in robotic vision applications. 

      
Figure 5.  Corner-based model keypoints and 90° T-junction-based model keypoints detected 
in simple images of good quality. Scanning window radii range from 5 to 20 pixels 
Figs 5 and 6 show a few examples of images with model keypoints detected for corner and 
90° T-junction patterns. Window radii ranging from 5 to 20 pixels have been used. It should 
be noticed that in simple images of good quality the model keypoints look prominent to 
human vision as well. For more complex images, however, many model keypoints look 
inconspicuously (see Figure 6). Nevertheless, they are also stable features that are 
consistently present (at least many of them) when the image is distorted. 
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A B 

Figure 6. Corner-based model keypoints (A) and 90° T-junction-based model keypoints (B) 
detected in a more complex image of normal quality. Scanning window radii range from 5 
to 20 pixels 

2.3 Scene Keypoints for Object Detection 

Computational complexity of model keypoints may be too high for real-time applications of 
machine vision. If, however, similar keypoints can be detected online in inspected images, 
model keypoints would be very reliable references for matching content of images to the 
available models. Therefore, we propose a simplified variant of model keypoints, so-called 
scene keypoints. The definition of scene keypoints is very similar to Def. 1. 
Definition 2 
For a given image, pixel (x,y) is an approximation-based scene keypoint of radius R (shortly scene 
keypoint) defined by a circular pattern TP if for the scanning windows located at (x,y): 
1. The approximations by TP pattern exist for the scanning radius R and for another 

radius Rsub, where Rsub is a predefined constant percentage of R (the recommended 
value for Rsub is approx. 70% of R).

2. The approximations parameters obtained for R and Rsub radii are similar. 
3. If several neighbouring pixels satisfying (1) and (2) exist, the scene keypoint is located 

at the pixel where the similarity between both scanning windows and their 
approximations reaches a local maximum. 

Usually, the practical constraints defined and explained after Def. 1 are also applicable to 
the above definition. 
Computational complexity of detecting scene keypoints is much lower. Moments of only 
two windows (R and Rsub radius) are computed at each location, and reusability of moment 
calculations both at the current location and for neighbour pixels can be exploited. The 
equations for parameter identification are also used only twice. 
Figs 7 and 8 contain exemplary images with scene keypoints detected (for corners and 90° T-
junctions) using windows of radii 10 and 7 pixels. Obviously, for the same images the 
number is scene keypoints is larger than the number of model keypoints because the 
detection algorithm is much less restrictive. Even though for perfect-quality images 
(compare Figure 5 to Figure 7) we would expect the same keypoints, the presence of 
additional keypoints can be explained by digital effects and mathematical properties of the 
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moments used. Nevertheless, each model keypoint is also always detected as a scene 
keypoint 

      
A B 

Figure 7. Corner-based 90° scene keypoints (A) and T-junction-based scene keypoints (B) 
detected in the images from Figure 5. Scanning window radii are 7 and 10 pixels 

   
A B 

Figure 8. Corner-based scene keypoints (A) and 90° T-junction-based scene keypoints (B) 
detected in the image from Figure 6. Scanning window radii are 7 and 10 pixels 
Matching scene keypoints extracted from analysed images to the database model keypoints 
is the fundamental operation in the proposed object detection framework. The following 
section discusses practical aspects of matching. In particular, the adaptability of the method 
(through selection of thresholds and matching rules) is highlighted. 

3. Matching Keypoints for Object Detection 

Matching keypoints extracted from images to the database keypoints is used in the majority 
of works where the goal is to identify objects that might be partially occluded or 
overlapping (e.g. Lowe, 2004; Mikolajczyk & Schmid, 2004; Islam, 2006; etc.). Unfortunately, 
the numbers of keypoints are usually very large. Typical scenes used for experiments (e.g. 
Islam, 2006) contain hundreds of keypoints, while the number of keypoints in databases 
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with just a few objects captured from a reasonable number of viewpoints can easily reach 
tens of thousands. Thus, the matching procedures become a serious computational problem. 
In order to optimise the matching and to avoid too many potential matches, researches 
either propose multidimensional descriptors of the keypoints and/or use carefully designed 
matching schemes. For example, 128 gradient-based directional descriptors are used in 
Lowe, 2004, while in Islam, 2006 only five moment descriptors are used but an efficient 
hashing technique has been developed to speed up keypoint matching. 
In the proposed method, the abovemetioned problems are significantly simplified. Even if 
the overall number of model keypoints is large, they are divided into different categories 
(defined by different patterns) that can be handled independently. Scene keypoints are 
similarly divided into the same categories (even though the total number of scene keypoints 
for typical images may look larger than the numbers seen in other works). Eventually, each 
scene keypoint is only matched to the model keypoints in the same category which greatly 
reduced the computational efforts and  allows parallelisation of the matching process. 
Descriptors of both model and scene keypoints are obviously parameters of the 
corresponding pattern approximations. Such descriptors can be used more selectively than 
other descriptors (e.g. Koenderink & van Doorn, 1987; Lowe, 2004; Islam, 2006, etc.) that are 
based on general properties of image intensities. Generally, the processes of keypoint 
detection and matching can be adaptively tuned to various applications. Three issues are 
highlighted below (the problem is scale invariance is separately discussed in Subsection 3.1). 
Thresholds
The number of extracted keypoints depends on several threshold values (see Subsections 2.2 
and 2.3) defining the acceptable accuracy of pattern approximations and the minimum 
levels of visual prominence (contrasts) of the scene keypoints. It is possible, for example, to 
demand high accuracy and to accept very low contrasts. Then the method would be able to 
identify only those image fragments that are very accurately approximated by the patterns 
used. However, such fragments may not be even visible to a human eye. Typically, such 
requirements can be used for search in poorly illuminated scenes (detection of frauds in 
images may be another application). Alternatively, only highly-contrasted approximations 
could be accepted as keypoints with less demands regarding the accuracy of the 
approximations. This would be potentially useful for detecting objects that may be seen 
differently than in the database images (but the scenes are expected to be well illuminated). 
Moreover, the level of acceptable differences between the descriptors of model keypoints 
and scene keypoints determines the overall behaviour of the method (high numbers of 
keypoints with possibly many false positives versus high confidence keypoints only). 
Configuration parameters 
The configuration parameters of keypoint approximations have a higher priority as they 
specify geometry of the local structures of the observed scenes. However, the parameters 
defining rotations of the patterns (e.g. β2 angle in Figs 1A, 1B and 1D) should be carefully 
used for matching (unless the search is for objects at certain orientations). Generally, the 
orientation parameters are used only in later stages (see Section 4). Moreover, parameters 
indicating distances (e.g. β1 in Figs 1B and 1C) should be measured both absolutely and 
relatively to the window radius (for scale invariance, more in Subsection 3.1). 
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Figure 9.  Examples of windows matched using different patterns and for diversified 
conditions (optimum approximations also shown for references): 
(A) Low accuracy of approximations acceptable. High similarity for angular widths and 

intensities required. Orientation match ignored. 
(B) Low accuracy of approximations acceptable. High similarity between angular widths 

required. Only relational match for intensities. Orientation match ignored. 
(C) Low accuracy of approximations acceptable. Similarity between angular widths 

ignored.  Only relational match for intensities. Orientation match  required. 
(D) No contrast thresholds in approximations. Low accuracy of approximations 

acceptable. All configuration parameters matched. Intensity matching not used. 
(E) High accuracy of approximations required. All configuration parameters matched. 

Intensities matched proportionally. 
(F) Good accuracy of approximations required. High similarity between line widths 

required. Intensity matching not used 
Intensity parameters 
The intensity parameters of keypoint approximations can be used more selectively that the 
configuration parameters (and their significance is usually lower). In the extreme scenarios 
they are not used in the matching process at all (i.e. only the local structures of the objects 
are important) although the other extreme is to match them accurately (to detect keypoints 
viewed in the same illumination conditions). Typically, either only relations between the 
intensities are verified (e.g. a scene corner keypoint can match a given model corner 
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keypoint if the acute section is lighter than the obtuse one – see Figure 1A) or the 
proportions between the intensities of keypoints should match to a certain level. 
To illustrate the above issues, Figure 9 presents exemplary pairs of circular windows (they 
are in the same scale as scale invariance is discussed in Subsection 3.1) that can be matched 
under various (sometimes not very realistic) assumptions. The windows are already placed 
at the local maxima of similarity functions so that if keypoints are extracted they would be 
found at the same locations. The corresponding pattern approximations are also given to 
highlight that matching is actually performed between the approximations rather than 
between the original contents of windows. 

3.1 Scale Invariance in Keypoint Matching 

Although the examples given in Figure 9 address the issue of matching circular windows of 
the same radius, the same approach can be used for matching scene keypoints of the same 
size. The only difference is that the match should be satisfactorily established both for the 
outer windows (of radius R) and for their sub-windows (of radius Rsub). However, matching 
objects shown in arbitrary scales to their models (i.e. matching scene keypoints to the model 
keypoints) can be done only under additional assumptions. 
If a “visual correspondence” between a fragment of a model image and a fragment in an 
inspected image exists, it can be generally confirmed by a match between the corresponding 
model keypoint (defined for the radius range (R1, R2) – see Def. 1) and the scene keypoint 
(defined by radii R and Rsub ) only when: 

1 2    and     subR R R Rσ σ≤ ≤  (7) 

where σ is the relative scale between the model image and the processed image. 
The relative scale defines how much the size of an object (measured in the image units) has 
been changed against the size of the same object in the model image. The relative scale is 
jointly determined by the image resolution, the camera-object distance and the camera focal 
length. Detailed analysis of relative scale issues in the context of object detection in given in 
(Saiful, 2006). 
In Section 2, we extract exemplary model keypoints using the range of radii (R1, R2) from 5 
to 20 pixels, while exemplary scene keypoints are found using 10 and 15 pixels. From Eq. (7) 
we can immediately calculate that for such conditions images of objects of interest can be 
prospectively matched to the model images if the relative scale changes from 1.3 to 0.33. It 
means that the objects can be only insignificantly enlarged, but the up to three times 
reduced in size. These results correspond to requirements of typical applications (e.g. in 
mobile robotics) where exemplary objects of interest are available so that their images can be 
captured from a close proximity. In the actual search operations, however, those objects 
would be usually seen from a longer distance, i.e. the size reduction in captured images is 
more likely to happen. 
Moreover, the approximation parameters representing distances (e.g. β1 and β2 in Figure 1C) 
should be matched is a special way. They are invariant under usage of variable-radius 
windows in terms of absolute distances, but they are not invariant relatively to the radius. 
Thus, if a scene keypoint is captured in an unknown scale, such parameters cannot be 
directly matched to the values in model keypoints. However, they can be later used for 
verifying the validity of the matches (see Sub-section 4.1). 



New Types of Keypoints for Detecting Known Objects in Visual Search Tasks 435

It should be finally remarked that the selection of radius ranges over which the model 
keypoints are built affects both scale-sensitivity and robustness of object detection. With 
wider (R1, R2) the scale invariance of obviously expanded to more scales. However, the 
number of model keypoints can be reduced as the pattern approximations must be stable 
over a wider range of radii. Therefore, the abilities to detect objects (both fully and partially 
visible ones) deteriorate. For occluded objects, fewer locations corresponding to model 
keypoints are seen, while for fully visible objects fewer correspondences can be found to 
verify hypotheses about the presence of objects. Limited (R1, R2) results in the opposite 
effects, i.e. the scale invariance is reduced to a narrower range, but the method is potentially 
able to detect objects under stronger occlusions and/or in poorer visibility conditions. 

4. Framework for Object Detection 

4.1 Hypothesis Building and Verification 

Generally, keypoint-based object detecting algorithms are voting schemes where an object of 
interest is considered found if a sufficient number of keypoints are consistently matched to 
the corresponding model keypoints (e.g. Wolfson & Rigoutsos, 1997). In our method, we 
propose to use such a method already presented in (Islam, 2006). The method has been 
applied to different types of keypoints, but it is also naturally applicable (after minor 
modifications) to the keypoints proposed in this paper. 
To detect presence of the objects of interest in processed images, several steps are performed 
as outlined below. Detailed explanations of the steps are given in (Islam, 2006). 
In the first step, clusters of scene keypoints matching the model keypoints are created using 
Generalised Hough Transform (GHT) similarly to Ulrich et al., 2003. The accumulator of u×v
size is used, where u is the number of objects and v is the number of model images for each 
object. A scene keypoint falls into an accumulator bin if it matches a model keypoint from 
the corresponding image. Usually, scene keypoints match several model keypoints 
(depending on the matching strategy the numbers can be larger or smaller – see Section 3). 
Each bin that collects a sufficient number of scene keypoints should be considered a 
hypothesis regarding a presence of the object (seen from a particular viewpoint). All such 
hypotheses are subsequently verified. It should be noted that eventually several hypotheses 
can be accepted. If they use different sets of points, such multiple hypotheses indicate the 
presence of multiple objects in the scene. If two or more accepted hypotheses use similar 
clusters of scene keypoints and yet produce different results, it means that either partially 
occluded different objects have similar model keypoints in the visible parts, or different 
objects accidentally share similar model keypoints. 
Simple examples illustrating advantageous and disadvantageous aspects of using such 
hypotheses are given in Figure 10. The examples are taken from (Islam, 2006) so that 
different types of keypoints are used, but the same effects can be expected for the proposed 
keypoints as well. 
Hypotheses are verified using the concept of shape graphs and scene graphs. Shape graphs are 
built for model images while scene graphs are built for analysed images; otherwise they are 
identically defined fully connected graphs. Nodes of the graph for a given cluster of 
keypoints represent the keypoints (scene keypoints for a scene graph and the matching 
model keypoints for a shape graph). Each edge of the graph is labelled by the distance 
between the adjoined nodes (keypoints). 
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An iterative algorithm is used to find the maximum sub-graphs of a scene-graph and a 
shape-graph for which all corresponding pairs of edges have approximately proportional 
label values. This iterative algorithm converges very fast and in most cases only a few 
iterations are needed. The generated sub-graphs specify the final set of scene and model 
keypoints used to confirm the validity of the hypothesis. The selected keypoints not only 
match the model keypoints but also their spatial distributions are similar. 

A B 

C D 
Figure 10. Model images (A and C) successfully matched to test images (B and D, 
respectively). Clusters of matching keypoints are shown 

The minimum number of nodes in the subgraphs (i.e. the number of consistently matched 
keypoints) required for confirmation of the object’s identity may depend on the set of objects 
under consideration. However, our experiments and statistical analysis show that usually 5 
keypoints are enough. It can be noticed, that the incorrect match between Figure 10C and 
Figure 10D is confirmed only by three keypoints. 
The hypotheses verification can be additionally supported by the analysis of configuration 
parameters of scene keypoints. In particular, only those keypoints from a single cluster 
would be used for building a scene-graph which are consistently rotated with respect to the 
corresponding model keypoints (see the last column of Table 2). This is a very powerful 
constraint that greatly reduces the complexity of the hypothesis verification procedure. 
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4.2 Exemplary Results 

The following example illustrates the process of object detection (i.e. hypothesis verification) 
briefly explained above. Selected issues regarding keypoint matching are also highlighted. 

A B 

C D 
Figure 11. The model image (A) and the test image (B). Corner scene keypoints shown in (C) 
and 90° T-junction scene keypoints are given in (D) 
An exemplary model image and a test image are given in Figure 11. Location of corner scene 
keypoints and 90° T-junction scene keypoints detected in the test image are also shown. 
The selected example deliberately uses a piece of cloth as the object of interest to show that 
the method has a potential to deal with some non-rigid objects as well. Match results have 
been obtained using only two types of scene keypoints shown in Figs 11C and 11D. To 
compensate for non-rigidity of the object, the shape/scene graphs labels have been 
compared only for the longest edges (so that minor local shape distortions do not affect the 
hypothesis verification). The additional assumptions are as follows: 
• Intensity parameters in scene keypoints and the corresponding model keypoints differ 

approximately similarly. 
• Angular widths in the corner scene keypoints are similar to the angles in the matching 

model keypoints. 
• All scene keypoints should be similarly rotated relatively to the orientations of 

corresponding model keypoints. 
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Figure 12. Matched keypoints in the model and test images (⊕ corner keypoints,  90° T-
junction keypoints 

A D E I J Y 

A × =40.0 0.57
69.7

=37.6 0.55
68.8

=73.0 0.57
128

=63.0 0.59
104.5

=89.8 0.61
145.3

D =40.0 0.57
69.7

× =60.1 0.57
105.6

=72.4 0.56
130

=30.1 0.57
52.5

=51.9 0.63
81

E =37.6 0.55
68.8

=60.1 0.57
105.6

× =46.4 0.63
71.9

=69.1 0.63
109

=98.1 0.64
152.4

I =73.0 0.57
128

=72.4 0.56
130

=46.4 0.63
71.9

× =57.4 0.57
99.7

=79 0.59
134.9

J =63.0 0.59
104.5

=30.1 0.57
52.5

=69.1 0.63
109

=57.4 0.57
99.7

× =31.4 0.59
53.3

Y =89.8 0.61
145.3

=51.9 0.63
81

=98.1 0.64
152.4

=79 0.59
134.9

=31.4 0.59
53.3

×

Table 1. Distance ratios for the corresponding fragment of the shape graph (denominator 
values) and the  scene graph (numerator values) for Figure 12 images 

Figure 12 presents pairs of finally matched keypoints, and Table 1 shows a fragment of the 
shape/scene graph (only the most distant keypoints are included). Although certain 
variations of the ratio between the corresponding distances in the shape and scene graphs 
can be noticed, the average ratio is consistently near 0.6 which can be assumed the 
approximation of the relative scale between the model image and the test one. This value 
corresponds to the visual assessment of Figs 11A and 11B. 
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Corner approximations 
Keypoint 

type Intensities
Angular

width
Orientation
difference 

model 187 and 57 134°
A scene 160 and 60 149°

32°

model 194 and 46 90°
B scene 165 and 60 104°

24°

model 186 and 45 153°
C scene 151 and 44 157°

25°

model 187 and 48 147°
D scene 135 and 38 146°

29°

model 121 and 18 140°
E scene 91 and 20 154°

41°

model 162 and 35 149°
F scene 136 and 56 152°

36°

model 162 and 38 151°
G scene 117 and 21 154°

36°

model 171 and 53 142°
H scene 137 and 31 153°

24°

model 154 and 10 142°
I scene 123 and 7 151°

26°

model 174 and 48 145°
J scene 143 and 35 156°

37°

model 26 and 172 158°
K scene 19 and 149 158°

29°

model 20 and 169 158°
L scene 14 and 139 160°

32°

90° T-junction approximations 
Keypoint 

type Intensities
Orientation
difference 

model 91, 45 and 179 
X scene 95, 61 and 136 41°

model 142, 4 and 73 
Y scene 138, 9 and 75 32°

Table 2. Approximation parameters for the model and scene keypoints used for the match 
shown in Figure 12 

As a further reference, Table 2 compares parameters of corner approximations and T-
junction approximations obtained for model and scene keypoints used for the hypothesis 
confirmation. It shows a relatively high consistency for the orientation differences (ranging 
from 24° to 42°) for all keypoints and high level of similarity for the angular widths of corner 
keypoints. The differences between the corresponding intensities are wider (which is 
unavoidable for images captured in different conditions) but they are consistent as well. In 
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particular, if the intensities differ they change in a similar way for all intensities of a given 
approximation. 

5. Concluding Remarks 

We have presented principles and exemplary results of a novel technique for detection of 
known objects in inspected images. The method is based on new types of keypoints which 
are the focus of this paper. The proposed keypoints are significantly different from typical 
gradient-based keypoints used in the alternative techniques. Our keypoints are based on 
moment-derived pattern approximations of circular patches. Though currently only a few 
patterns are used (i.e. corners, T-junctions and round tips of thick lines) a wide range of 
other patterns can be added using the approach presented in our previous works (e.g. 
Sluzek, 2005). The keypoints are characterised by intensity and configuration descriptors 
(e.g. angular widths and orientation of the approximations) that are generally robust under 
illumination changes, noise, texturisation, and other typical real-world effects. More 
importantly, the keypoints are also scale-invariant within a certain range of scales. This has 
been obtained by using two different methods for keypoint building in model images and in 
analysed images. 
Model images of database (known) objects are processed in multiple scales in order to 
identify model keypoints that are invariantly characterised within the assumed range of 
scales. The operation may be computationally expensive, but it is typically performed either 
offline or in the preliminary phase of deployment when timing constraints are not critical. 
However, the scene keypoints extracted from inspected image are based (unlike keypoints 
used in other scale-invariant techniques) on a single-scale image scanning and processing. 
Additionally, the efficiency of keypoint matching is improved by a simultaneous usage of 
several keypoint types. Even if the overall number of keypoints (both model and scene ones) 
is comparable to the numbers typically extracted and used by other methods, scene 
keypoints of a certain category are matched only against the corresponding subset of model 
keypoints of the same category. Therefore, the computational costs of image analysis are 
relatively low and the method is suitable for real-time applications (e.g. for exploratory 
robotics which is considered the primary application area). 
Several improvements of the method are currently envisaged First, we propose to enhance 
the efficiency of keypoint matching by adding (without any significant computational costs) 
more keypoint descriptors. For that purpose, moment-based expressions invariant under 
similarity transformations and linear intensity changes are considered. Although generally 
such invariants (proposed for colour images and areas of arbitrary shapes in Mindru et al., 
2004) are rather complex, we intend to apply them to circular images only. For circular 
images, the following expressions have been found invariant under similarity 
transformations and linear intensity changes. For other shapes of the processed areas they 
are not invariant, however. 
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where R is the circle radius. 
Another prospective continuation of the method is to use colour equivalents of the proposed 
keypoints (with three colour channels processed separately or jointly). We also consider 
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hardware accelerators for the moment calculations. Selected moment-computing procedures 
have been already implemented in FPGA as a feasibility study. The results indicate that with 
a support of an FPGA accelerator a real-time detection of scene keypoints in a TV video 
stream is feasible. 
The primary area of intended applications for the proposed method is intelligent robotics 
(exploratory robots in particular). The ultimate goal would be a system that can be shown a 
physical “known object” and subsequently such objects present in complex cluttered scenes 
can be detected. However, other areas of applications should be highlighted as well. As 
some recently published results suggest (e.g. Prasad et al., 2004) image retrieval and/or 
search in visual databases seems to be a potential application area. Using the proposed 
keypoints, not only the search for known objects or images can be conducted, but also some 
image-related frauds can be revealed (e.g. detection of almost invisible highly accurate 
approximations may indicate image doctoring).  
Surveillance and/or security systems are another envisaged area for the developed 
technique. Since such systems are equipped with more and more embedded intelligence, a 
system that can identify “known intruders” or “particularly dangerous intruders” is a 
possible scenario. Development of a sensor network with vision capabilities that can 
eventually incorporate the proposed method has been reported in our recent papers (e.g. 
Sluzek et al., 2005). 
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1. Introduction 

Even tough the field of computer vision has seen huge improvement in the last few decades, 
computer vision systems still lack, in most cases, the efficiency of biological vision systems. 
In fact biological vision systems routinely accomplish complex visual tasks such as object 
recognition, obstacle avoidance, and target tracking, which continue to challenge artificial 
systems. The study of biological vision system remains a strong cue for the design of devices 
exhibiting intelligent behaviour in visually sensed environments but current artificial 
systems are vastly different from biological ones for various reasons. First of all, biologically 
inspired vision architectures, which are continuous-time and parallel in nature, do not map 
well onto conventional processors, which are discrete-time and serial. Moreover, the 
neurobiological representations of visual modalities like colour, shape, depth, and motion 
are quite different from those usually employed by conventional computer vision systems. 
Despite these inherent difficulties in the last decade several biologically motivated vision 
techniques have been proposed to accomplish common tasks. For example Siagian & Itti [14] 
developed an algorithm to compute the gist of a scene as a low-dimensional signature of an 
image, in the form of an 80-dimensional feature vector that summarizes the entire scene. The 
same authors also developed a biologically-inspired technique for face detection [13]. 
Interesting results have also been reported in generic object recognition and classification 
(see for example [15] [16] [12] [11]). Also on the sensor side the biological vision systems are 
amazingly efficient in terms of speed, robustness and accuracy. In natural systems visual 
information processing starts at the retina where the light intensity is converted into 
electrical signals through cones and rods. In the outer layers of the retina the photoreceptors 
are connected to the horizontal and bipolar cells. The horizontal cells produce a spatially 
smoothed version of the incoming signal while the bipolar cells are sensitive to the edges in 
the image. Signals output from the cells are then used for higher level processing. Several 
architecture have been proposed to mimic in part the biological system and to extract 
information ranging from low to high level. For example Higgins [10] proposed a sensor 
able to perform an elementary visual motion detector. Other researchers proposed sensor to 
detect mid-level image features like corners or junctions [4] or even to perform higher level 
tasks such as tracking [6] or texture classification [5]. Robotics represents a typical field of 
application for hardware implementations of biologically inspired vision architectures. 
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Robot vision routines such as self localization, or 3D perception via calibrated cameras 
require large computing capabilities. Autonomous robot platforms have limited space to 
dedicate to such high level tasks because on board computers are busy most the time with 
motor control, and sensorial data acquisition. Even more limited embedded hardware is 
available on small wheeled robots for which almost all sensory computation is delegated to 
remote machines. Also in the case of robots equipped with onboard computer, most 
processing focuses on motion control, and low level sensorial data elaboration while heavy 
computer vision tasks, like image segmentation and object recognition, are performed in 
background, via fast connections to a host computer. Emerging gigascale integration 
technologies offer the opportunity to explore alternative approaches to domain specific 
computing architectures that can deliver a significant boost to on-board computing when 
implemented in embedded, reconfigurable devices. This paper describes the mapping of 
low level feature extraction on a reconfigurable platform based on the Georgia Tech SIMD 
Pixel Processor (SIMPil).  
In particular, an adaptation of the Boundary webs Extractor (BWE) has been implemented 
on SIMPil exploiting the large amount of data parallelism inherently present in this 
application. The BWE [1] is derived from the original Grossberg’s Boundary Contour 
System (BCS) and extracts a dense map of iso-luminance contours from the input image. 
This map contains actual edges along with a compact representation of local surface 
shading, and it is useful for high level vision tasks like Shape-From-Stereo. The Fast 
Boundary Web Extraction (fBWE) algorithm has been implemented in fixed point as a feed-
forward processing pipeline thus avoiding BWE feedback loop, and achieving a 
considerable speed-up when compared against the standard algorithm. Application 
components and their mapping details are provided in this contribution along with a 
detailed analysis of their performance. Results are shown that illustrate the significant gain 
over a sequential implementation, and most importantly, the execution times in the order of 
170 μsec for a 256000 pixel image. These results allow ample room for real-time processing 
of typical subsequent tasks in a complete robot vision system. The rest of this chapter is 
organized as follows. Section II introduces the Georgia Tech SIMPil architecture, and 
implementation efforts on FPGA. Section III provides some remarks on the original 
Grossberg’s BCS, and its derived BWE model. In section IV the fBWE system is described, 
and its mapping onto SIMPil detailed. Section V reports extensive experiments with the 
fBWE compared with the BWE results, while in section VI some conclusions are drawn. 

2. SIMPil FPGA implementation 

The GeorgiaTech SIMD Pixel Processor (SIMPil) architecture consists of a mesh of SIMD 
processors on top of which an array of image sensors is integrated [8] [7]. A diagram for a 
16-bit implementation is illustrated in Figure 1. Each processing element includes a RISC 
load/store datapath plus an interface to a 4×4 sensor subarray. A 16-bit datapath has been 
implemented which includes a 32-bit multiply-accumulator unit, a 16 word register file, and 
64 words of local memory (the ISA allows for up to 256 words). The SIMD execution model 
allows the entire image projected on many PEs to be acquired in a single cycle. Large arrays 
of SIMPil PEs can be simulated using the SIMPil Simulator, an instruction level simulator. 
Early prototyping efforts have proved the feasibility of direct coupling of a simple 
processing core with a sensor device [3]. A 16 bit prototype of a SIMPil PE was designed in 
0.8 μm CMOS process and fabricated through MOSIS. A 4096 PE target system has been 
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used in the simulations. This system is capable of delivering a peak throughput of about 5 
Tops/sec in a monolithic device, enabling image and video processing applications that are 
currently unapproachable using today’s portable DSP technology. The SIMPil architecture is 
designed for image and video processing applications. In general, this class of applications 
is very computational intensive and requires high throughput to handle the massive data 
flow in real-time. However, these applications are also characterized by a large degree of 
data parallelism, which is maximally exploited by focal plane processing. Image frames are 
available simultaneously at each PE in the system, while retaining their spatial correlation. 
Image streams can be therefore processed at frame rate, with only nominal amount of 
memory required at each PE [8]. The performance and efficiency of the SIMPil have been 
tested on a large application suite that spans the target workload. 

Figure 1. The SIMPiL architecture

For the SIMPil processing element, an application suite is selected from the DARPA Image 
Understanding suite [17]. These applications, listed in Table 1, are expressed in SIMPil 
assembly language, and executed using an instruction level simulator, SIMPilSim which 
provides various execution statistics. This simulator provides execution statistics including 
dynamic instruction frequency, operand size profiles, PE utilization, and PE memory usage. 
All applications are executed on a simulated 4096 processing element system with 16 pixels 
mapped to each PE for an aggregate 256×256 image size. All applications run well within 
real-time frame-rates and exhibit large system utilization figures (90% or more for most 
application). Details can be found in [8]. To bring SIMPil performance onto robot platform, a 
reconfigurable platform based on FPGA devices is being developed. This platform uses a 
parameterized SIMPil core (SIMPil-K) described in the VHDL hardware description 
language. The SIMPil-K platform is an array of Processing Elements (PE) and 
interconnection registers which can be configured to fit any FPGA device at hand. Figure 2 
shows the high-level functional schema of a 4×4 SIMPil-K array and its NEWS 
interconnection network. Each NEWS register supports communication among a particular 
node (i.e. PE) and its north and west neighbours. By replicating this model, a NEWS (North, 
East, West, South) network is obtained, with every node connected to its four neighbours. 
SIMPil-K receives an instructions stream through a dedicated input port. The instruction 
stream is then broadcast to each PE. To upload and download image data, SIMPil-K uses a 
boundary I/O mechanism, supported by its boundary nodes (i.e. PEs laid on its East/West 
edge): every east-edge node uploads a K-bit data word from its boundary-input port to the 
general purpose register file; every west-edge node downloads a K-bit data word from its 
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register file to the boundary output port. An upload/download operation (one word per 
node) takes only one clock cycle. Both boundary input and output operations are enabled by 
a single instruction, XFERB. When a NEWS transfer instruction arrives, it needs only one 
clock cycle to transfer the data word from each node to a neighbour one, in a specified 
direction. The SIMPil-K platform can be reconfigured by varying a number of architectural 
parameters, as detailed in Table 2. This allows for experimentation with a large set of 
different system configurations, which is instrumental to determine the appropriate system 
characteristics for each application environment AW and RAW parameters set the address 
space of register file and memory, respectively. PPE specifies the number of image pixels 
mapped to each PE. The Influence parameter toggle between a fixed instruction width (24 
bit) and a variable one (8+K bits). The interface of a processing element is depicted in Figure 
3, below. There are two input ports for clock signals, a reset input port and the instruction 
stream port. NEWS transfers are carried through the three bidirectional dedicated ports 
(NEWS ports) which drive three NEWS buses, namely the North/West Bus, East Bus and 
South Bus. 

Image Transforms Image Enhancement 
Discrete Fourier Transform Intensity Level Slicing 
Discrete Cosine Transform Convolution 
Discrete Wavelet Transform Magnification 
Image Rotation Median Filtering 
Image/Video Compression Image Analysis 
Quantization Morphological Processing
Vector Quantization Region Representation 
Entropy Coding Region Autofocus 
JPEG Compression K-means Classification 
Motion Estimation  
MPEG Compression  

Table 1. SIMPil Application Suite 

Figure 2. K-bit 4-by-4 SIMPil-K array 
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Boundary data input and output are carried through the two dedicated boundary ports. The 
processing element parameterized architecture is described in Figure 4. There are four 
communication buses shared by the functional units. All functional units can be 
reconfigured based on the datapath width selected. A single PE can perform integer 
operations on K-bits. Dedicated barrel shift unit and multiply-accumulate unit are 
instrumental to speed-up most image processing kernels. The Sleep Unit verifies and 
updates the node activity state, thus allowing execution flow control based on each PE local 
data. The SIMPil-K system has been simulated and synthesized on FPGA; synthesis statistics 
about employed resources has been generated and analyzed. Figure 5 shows resources use 
percentage achieved by implementing several 16-bit SIMPil-K versions on an eight million 
gates FPGA: particularly, 2-by-2, 4-by-4 and 8-by-8 16-bit SIMPil-K arrays have a resources 
use percentage respectively of 3.3%, 13.3%, and 53.3%. 

Parameter Function Values Constr. Def. 
K Word Width {8, 16, 32, 64} – 16 
X Array Columns X ∈ N 4

Y Array Rows 
Register Y ∈ N X, Y = 2j, j ∈ Z

4

AW File Address 
Width AW ∈ N ∩ [1, 16]

I = off → AW  ≤ 4
I = on →

AW  ≤ (K/4)
4

RAW Local RAM 
Address Width RAW ∈ N ∩ [1, 16} RAW  ≤ (K/4) 4

PPE Pixel per 
Processing PPE ∈ N PPE = p2, p ∈ N, 

PPE ≤ 2Κ 8

Influence 
(I)

Instructions 
Format
Change
Enable

I ∈ [on, off] – off 

Table 2. SIMPil-K Architectural Parameters 

Figure 3. The Processing Element Black Box 

3. The Boundary Webs Extractor 

The original BCS architecture was proposed by Grossberg and Mingolla [9] as a neural 
model, aimed to explain some psychological findings about perceptual grouping of contours 
in vision: it was part of a more complex theory regarding human perception of shapes and 
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colors. In this formulation, the BCS is a multi-layer recurrent network trained using a 
competitive/cooperative scheme until an equilibrium state is reached. BCS units have 
dynamic activations that are expressed using differential equations with respect to time. The 
network takes the input from a gray-level image, with a lattice of receptive fields computing 
local contrast in small areas. Output is provided as a 2D map of vectors, with the same 
spatial displacement of the input receptive fields, which are called boundary webs, and 
describe changes in brightness over the image. A boundary web is locally oriented along a 
constant brightness line, meaning that image contrast changes along the orthogonal 
direction. The amplitude of each boundary web is related to the strength of the local 
contrast. Boundary webs form a piecewise linear approximation of all image contours, while 
they follow iso-luminance paths inside smoothly shaded surfaces: consequently, they can be 
regarded as a compact description of image shading. a typical BCS analysis is described in 
Figure 7(b), while Figure 6 reports an outline of the BCS architecture. The network consists 
of an input stage used to collect contrast information, the so called OC Filter, and of three 
layers: Competition I, Competition II and Cooperation. The OC Filter is used to collect local 
image contrast along different directions without taking into account contrast orientation. 

Figure 4. Processing Element K-bit Datapath 

All subsequent layers are arranged as a lattice of complex cells, with the same spatial 
displacement of the receptive fields. Each cell in the lattice has a pool of activation values 
which are related to the various contrast directions. The first two layers are competitive 
ones, and their purpose is to refine locally detected contours. The third (output) layer 
performs long range cooperation between neighboring cells in order to complete extended 
contours across the image. Finally, the feedback loop is again competitive, and is connected 
to the first layer in order to enforce winner cells activations. In the OC Filter circular 
receptive fields at position (i,j) sum up input pixels from a squared sub-image S = [Spq] in 
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two symmetric halves Lijk and Rijk defined for each mask at the k-th orientation. Assuming 
that [x]+ = max(x, 0), the resulting activation at position (i, j) and orientation k is: 

 (1) 

where Uijk and Vijk are the summed input in the mask’s halves, while α and β are suitable 
constants. The first competitive layer enforces local winner activations via the feedback 
signal and the input from the OC Filter, while tends to decrease activation in neighboring 
cells with the same orientation. In case of strong aligned activations induced by image 
contours, the aim of the first competitive stage is to reduce the activation diffusion beyond 
contours endpoints. 

Figure 5. Used resources on eight million gates FPGA 

Figure 6. The BCS architecture 

This effect results in the illusory contours completion phenomenon which is commonly 
observed in human perception. Activation laws are, in general, differential equations with 
respect to time, but in the BCS computational model they are computed at equilibrium 
(d/dt= 0). In the case of the Competition I layer the dynamic activation rule is: 

(2)
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and the equilibrium activation wijk for each cell in this stage is computed as: 

(3)

where vijk is the feedback signal, Apqij are the coefficient of a small kernel with cylindrical 
shape, while I and B are suitable constants. In following equations capital letters without 
indexes are constant values used to tune the model. The second competitive stage performs 
competition among orientations inside the same cell: this is a local contour refinement 
mechanism which will be enhanced by the cooperative stage. The activation law has the 
following form: 

(4)

where capital indexes are referred to orthogonal direction with respect to the current one. 
The cooperative stage performs long range cooperation between cells with the same 
orientation that are displaced in a wide neighborhood. In this way long contours completion 
is enabled. Considering the vector d connecting the position (i, j) with a generic neighbor 
(p,q), the following quantities can be defined Npqij = |d| and Qpqij = ∠ d, while the 
cooperative activation law is: 

(5)

where:

This very complex kernel has the form of two elongated blobs aligned with the orientation k,
and exponentially decreasing towards 0. In particular, P represents the optimal distance 
from the cooperative cell at which maximum input activation is collected. Finally, feedback 
is provided from the cooperative stage to the first competitive one, in order to enforce those 
activations that are aligned with emergent contours and decrease spurious ones. The form of 
the feedback signal is: 

(6)

where Wpqij are the coefficient of a small cylinder shaped kernel. BCS provides a compact 
description of image shading at selectable resolution levels: shading, in turn, can be used to 
perform shape estimation, while boundary webs can be used as low level features for 
contour extraction, alignment, or stereo matching. Possible uses of BCS have been explored 
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by some of the authors resulting in a software implementation of the BCS, called Boundary 
Web Extractor (BWE) which has been used as a low level feature extraction module in 
different vision systems. In particular, a neural shape estimation model has been proposed 
[1] coupling BWE analysis with a backpropagation network trained to classify BWE patterns 
as belonging to superquadrics surface patches. Input image surfaces are processed by BWE, 
and the BWE output pertaining to different ROIs is modeled in terms of superquadrics. 
Another approach [2] performs BWE analysis on stereo couples. Input images are analyzed 
both with standard correlation operator over pixels intensities, and with BWE as a 
supplementary feature. Candidates points are labeled using a measure of the matching 
probability with respect to both the preprocessing operators. Finally, a relaxation labeling 
algorithm provides matches for almost all points in the image, and disparities are obtained. 
The high resolution achievable by the BWE analysis enables dense depth maps. The main 
objective of BWE is to perform local brightness gradient estimation, without taking into 
account the support for perception theories. In this perspective BWE has been slightly 
modified with respect to BCS, to obtain sharp contrast estimation and emergent contours 
alignment. In particular, N couples of dually oriented Gabor masks have been used as 
receptive fields to obtain n activation values discarding, for each couple, the mask providing 
negative output. The resulting OC Filter is described by the following equation: 

(7)

where Uijk and Vijk are the outputs of two dual Gabor masks. The generic Gabor filter has 
been selected in our implementation with a width w equal 
to 8 pixels, 2N = 24. The filter equation is: 

(8)

Here s is the application step of the masks; the α...δ parameters have been heuristically 
tuned. The kernel in eqs. (3) and (6) have been selected with gaussian shape, and the 
subtractive term in the exponential part of kernel has been suppressed, and all 
constant values in the equations have been suitably tuned. To ensure the kernel to be 
symmetric, its central value has been forced to be 0 in order to avoid the exponential 
function to give a positive value when Npqij ≡ 0. Finally, we can give a formulation of the 
BWE structure as a 3D matrix containing, at each location (i, j), 2N activation values 
belonging to a star of vectors. 

(9)

Each vector represents the value of the image contrast along the orthogonal direction with 
respect to its phase. As a consequence of the modified OC Filter behaviour, the location Bij

of the BW matrix contains N couples, each of them having a null vector that corresponds to 
the negative output of the filter with at same orientation. 

(10)
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For computer vision purposes the average boundary webs are noticeable because they 
provide a single estimation of the local image contrast at each spatial location, both as 
intensity and direction. The average process is computed using a suitable average function 
fav:

(11)

The average function can be selected according to several criteria: the maximum value or the 
vector sum of all the elements at each location; we selected a form of fav that weights each 
intensity with the cosine of the angle between the phase value and a mean phase angle, 
obtained weighting each phase with the respective intensity. 

(12)

Figure 7 makes a comparison between the original BCS and BWE both for the actual output, 
and for the average one. 

(a) (b) (c) 

(d) (e) 
Figure 7. Comparison between BCS ((b),(d)) and BWE ((c),(e)) 
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4. The fBWE system 

The main idea about the fBWE implementation is to design a massively parallel algorithm 
that should be robust with respect to noise while producing an output as similar as possible 
to the true BWE architecture. The main performance drawbacks of the BWE network are the 
presence of a feedback loop aimed to put the whole system in a steady state, and the use of 
floating point calculations. The fBWE system is a feed-forward elaboration pipeline that is 
completely implemented using 16-bit integer maths, according to SIMPil-K requirements. In 
Figure 8 the fBWE pipeline is shown. The fBWE architecture relies on the cascade of the OC 
Filter, and a competitive-cooperative pipeline. The SIMPil-K configuration we used, is made 
of 32×32 PEs with a PPE equal to 64, that is each sub-image is 8×8 pixels wide. 

Figure 8. The fBWE pipeline 

The whole process has been applied to 256×256 images, and M = 64 so there is a 4 pixels 
overlapping along each direction between two adjacent neighborhoods. Gabor masks in the 
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OC Filter have been implemented using equation (8), and have been provided to the PE 
array as a suitable gray level image. The original floating point values obtained for the 
weights have been approximated to 8-bit integer values, and the minimum value has been 
added to each of them to obtain a correct dynamics in the range [0,....,255]. The set of Gabor 
masks is depicted in Figure 9. The same mask is loaded into all the PEs in one column. 

   
Figure 9. Arrangement of the Gabor masks for the PEs  

Each row of the first image contains only 16 different orientations repeated twice, while the 
second one depicts the last 8 orientations repeated four times. At loading time, the offset is 
subtracted from each Pixel Register in the PE to correct the weights. After loading the input 
image the true filtering starts. The R15 register of each PE contains the correct value for the 
orientation k in order to store the result in the correct position after each filtering step. Due 
to the overlapping, each mask is used to convolve four neighborhoods shifting only one half 
of a sub-image between two PEs at each step, according to the scheme West-North-East-
South. Finally, the Gabor masks image is shifted in the West direction by 8 pixels starting 
again the filtering cycle. The same procedure is adopted for the second Gabor masks image, 
but the filtering cycle is iterated only 8 times. After the filtering phase each PE contains four 
adjacent locations each containing N non null orientations due to the application of equation 
(7). The OC Filter output is quit precise in the determination of the orientations, but it 
suffers from its locality. Contours are not perfectly aligned, and they tend to double along a 
direction due to the activations present in couples of overlapped regions which intersect the 
same contour line. The competitive-cooperative pipeline tends to eliminate these problems 
without the use of a feedback scheme. Here the outputs of the OC Filter are grouped as N
orientation images 64×64 pixels wide. The pipeline is split into two parallel branches: at the 
first step each orientation image is processed with a 3×3 high pass filter in the left branch, 
and a median filter of the same size in the right one. The left processing is aimed to enrich 
details, and to strengthen the contours, while the median filter is a form of blurring intended 
force close orientations to align thus correcting the OC Filter spurious outputs. The 
implementation of these filters in SIMPil-K implies that each PE needs a frame of 12 values 
surrounding the ones stored in its local memory. So a suitable transfer routine has been set 
up to obtain these values form the 8-neighborhood surrounding the PE. The four filtered 
values are again stored in the PE’s local memory. The next step in both the pipeline branches 
is the suppression of uniform activation values. When an image region insisting on the 
location (i, j) exhibits a uniform luminance without perceivable contrast variation along any 



Biologically Inspired Vision Architectures: a Software/Hardware Perspective 455

direction the fBWE activations bijk are almost of the same magnitude and a sort of little star is 
visualized in the output. To avoid this behaviour the uniform activations suppression acts 
according to the following rule: 

 (13) 
Here the threshold value of 0.8 has been selected on the basis of a trial and error process. 
After uniform activations suppression the maximum values  and  are selected at each 
location for the left and right branches thus obtaining two average boundary webs images, 
using max(  ) in place of the averaging function fav. High pass, and median filters give rise 
to extremely different dynamics in the two pipeline branches, so a gain element has been 
placed in the high pass branch to normalize these ranges. The gain factor has been 
determined as 

(14)

In all our experiments As assumed values between 6 and 7. Before the conjunction of the two 
branches with the union pixel by pixel of the left (WL) and right (WR) image, a sharp 
threshold S has been applied in order to join exactly WL and WR. The value of S has been 
selected as the 30% of the maximum activation in WL, and all the values in WR that are over 
the value of S are joined with all the values of WR that are beneath the same threshold. The 
joined image WJ can be defined as WJ = [(WJ,ij, kij)] where for each location (i, j) the 
amplitude, and the relative orientation value are defined. The last step is the cooperative 
filtering that generates the fBWE image W, and is aimed to enforce aligned neighboring 
activations. 
An activation is enforced if its orientation is slightly different from the one of the location at 
the center of the filter mask, otherwise it is decreased. The generic weight Mpq of the filter 
applied to the location (i, j) is defined as: 

(15)

Also in this case it is necessary for each PE to obtain 12 values from its eight neighbors. 

5. Experimental Results 

Several experiments have been conducted on a set of images with different pictorial 
features: real images with a lot of shading, highly textured images, high contrast ones, and 
artificial pictures with both high dynamics (like cartoons) and poor one (Kanizsa figures). In 
Figure 10 the BWE and fBWE images are reported along with a diagram of the local 

orientation differences . It can be noticed that the two 
implementations are perceptually equivalent, and the major differences are present in the 
uniform brightness regions. In these parts of the image the BWE exhibits some small 
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residual activations due to the feedback based stabilization process, while the fBWE 
suppresses them at all. In the case of Kanizsa figures with a few well distinct gray levels (see 
Figure 11) the OC Filter alone performs better of the fBWE, so it has been selected as the 
system output. As regards the performance, the BWE execution time in our experiments 
ranges from 14.94 sec. in the case of Kanizsa figure to 68.54 sec. for the Lena and Tank 
images, while fBWE has a constant execution time of 0.168 msec. This is an obvious finding 
because the fBWE is a feed-forward architecture, while the BWE is not, and its convergence 
to a steady state depends on the input brightness structure. 

a) Lena ( (b) Tank (c) Gear (d) Cartoon 
Figure 10. Experimental results, from top to bottom: input image, BWE output, fBWE 
output, difference 
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(a) (b) (c) 

Figure 11. Experimental results on a Kanizsa figure: (a) input image, (b) fBWE output, (c) 
OC Filter output 

6. Conclusion 

A Fast Boundary Web Extraction (fBWE) algorithm was presented in this paper as a fixed-
point, data parallel implementation of the BWE. fBWE was mapped on SIMPil-K 
reconfigurable FPGA based platform. 

Application components and their mapping details were provided along with a detailed 
analysis of their performance. Experimental results illustrate the significant gain achieved 
over the traditional BWE, with execution times allowing ample room for real-time 
processing of typical subsequent tasks in a complete robot vision system. Experimental 
results on an extensive data set illustrate the significant gain achieved over the traditional 
BWE implementation. Execution times are in the order of 170 μsec for a 256000 pixel image, 
thus allowing ample room for real-time processing of typical subsequent tasks in a complete 
robot vision system. 
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1. Introduction 

In recent years, robot vision became an attractive scientific discipline. From a technological 
point of view, its aim is to endow robots with visual capabilities comparable to those of 
human beings. Although there is considerable endeavour, the progress is only slowly 
proceeding, especially in comparison to the level of behavior of human beings in natural 
environments. This has its reason in lacking insight into the organization principles of 
cognitive systems. Therefore, from a scientific point of view, robot vision is a test bed for 
understanding more on cognitive architectures and the mutual support of vision and action 
in cognitive systems. While in natural systems self-organization of structures and data flow 
is responsible for their success, in case of technical systems, the designer has to model 
cognitive systems. Modeling needs a theoretical base which is rooted in the state-of-art 
knowledge in science, mathematics and engineering. 
The most difficult problem to be solved is the design of a useful cognitive architecture. This 
concerns e.g. the gathering and use of world knowledge, controlling the interplay of 
perception and action, the representation of equivalence classes, invariants and concepts. 
Besides, hard real-time requirements have to be considered. The most attractive approach to 
the design of a cognitive architecture is the framework of behavior-based systems (Sommer, 
1997). A behavior is represented by a perception-action cycle. Remarkable features of such 
architecture are the tight coupling of perception and action, and learning the required 
competences (Pauli, 2001) from experience. 
Another problem to be coped with in designing robot vision systems is the diversity of 
contributing disciplines. These are signal theory and image processing, pattern recognition 
including learning theory, robotics, computer vision and computing science. Because these 
disciplines developed separately, they are using different mathematical languages as 
modeling frameworks. Besides, their modeling capabilities are limited. These limitations are 
caused to a large extend by the dominant use of vector algebra. Fortunately, geometric 
algebras (GA) as the geometrically interpreted version of Clifford algebras (CA) (Hestenes 
& Sobczyk, 1984) deliver a reasonable alternative to vector algebra. 
The aim of this contribution is to promote the use of geometric algebra in robot vision 
systems based on own successful experience over one decade of research. The application of 
GA within a behavior based design of cognitive systems is the long-term research topic of 
the Kiel Cognitive Systems Group (Sommer, 1999). Such a coherent system has to be an 
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embodiment of the geometry and the stochastic nature of the external world. That is, it 
should enable both internal processes converging at reasonable interpretations of the world 
and performing useful actions in the environment. We will report on some novel results 
achieved within the last years which extend the survey papers (Sommer, 2004; Sommer, 
2005).
Our main contributions to applications of geometric algebra in robot vision are focussing on 
the following problems:  
• Development of a signal theory for local analysis of multi-dimensional signals (Sommer 

& Zang, 2005)  
• Formulation of computer vision in the framework of conformal geometry (Rosenhahn 

& Sommer, 2005a and 2005b)  
• Knowledge based neural learning by using algebraic constraints (Buchholz & Sommer, 

2006)
• Higher-order statistics (Buchholz & Le Bihan, 2006) and estimations (Perwass et al., 

2006) in GA. 
More details of the results contributed by the Kiel Cognitive Systems Group can be found in 
the publications and reports on the website http://www.ks.informatik. uni-kiel.de. Here we 
will report from an engineer’s point of view. But the reader should be aware that GA 
constitutes a framework which has to be adapted to the problem at hand. Therefore, the 
system designer has to shape this mathematical language in a task related manner. This is 
both a challenge and a chance at the same time. 
In section 2, we will present a bird’s eye view on geometric algebra and will also motivate 
its use in robot vision. Special emphasis will be on the conformal geometric algebra (CGA). 
A novel approach to local image analysis based on embedding the curvature tensor of 
differential geometry into a Clifford analysis setting will be presented in section 3. Sections 
4 and 5 are dedicated to our recent progress on estimations from uncertain data in CGA. We 
will handle uncertainty for geometric entities and kinematic operations as well. Parameter 
estimation methods, based on the principle of least squares adjustment, will be used for 
evaluating multi-vectors and their respective uncertainties. Also, in section 5 we will focus 
on the problem of pose estimation in case of uncertain omnidirectional vision. In addition, 
we will present a novel generalized camera model, the so-called inversion camera model. 
Again, we will take advantage of the representation power of CGA. 

2. A Bird’s-eye View on Geometric Algebra 

In this section we will sketch the basic features of a geometric algebra representation and 
compare it with a vector space representation. Special emphasis is laid on the conformal 
geometric algebra. In addition, we introduce the key ideas of the tensor notation of GA 
representations and the coupling of the conformal embedding and stochastic concepts. 

2.1 Comparison of Vector Algebra and Geometric Algebra 

As mentioned in the introduction, the limited modeling capabilities within the disciplines 
contributing to robot vision are caused to a large extend by the use of vector algebra. That 
statement has to be justified. First, a vector space is a completely unstructured algebraic 
framework whose entities, that is the vectors, are directed numbers. This is a richer 
representation than having only scalars at hand. But the product of vectors, the scalar  
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product, destroys the direction information originally represented in the pair of vectors by 
mapping them to a scalar. Second, we are mostly interested in vector spaces with Euclidean 
norm. The basic geometric entities of Euclidean spaces are points. A Euclidean vector space 
can thus be interpreted as an infinite set of points. There is no possibility of formulating 
useful subspace concepts in the vector space but set based ones. Third, a cognitive system is 
reasoning and acting on global geometric entities, like a tea pot. It makes no sense to 
decompose the world phenomena into point-like entities. Fourth, the most important 
transformation in robot vision, that is rigid body motion (RBM), has no linear representation 
in Euclidian space. Instead, if we are interested in describing RBM of points, we have to take 
advantages of an algebraic trick as extending the dimension of the space for remaining in 
terms of linear operations. There is no general way for generalizing this trick within the 
vector space concept to other geometric entities (as a pair of points or a line). Therefore, 
most of the basic disciplines of robot vision are getting stuck in non-linearities. The resulting 
iterative solutions are intractable in real-time applications. Finally, besides translation, all 
other operational entities acting on a vector are not itself elements of the algebra. This 
makes the description of actions based on certain transformation groups a difficult task. 
Geometric algebra enables to overcome most of those problems, at least to a certain extend. 
In fact, if not specified, the term geometric algebra represents a whole family of geometric 
algebras. The designer has to select the right one for the problem at hand or has to design a 
special one with the desired features. Hence, its use enables a knowledge based system 
design in an algebraic framework which can represent the geometry of interest. 
Representing geometry in an algebraic framework means thinking in a Kleinian sense 
(Brannan et al., 1999). Any GA has the following features: 
1. It is a linear space, which can be mapped to a vector space again. Its elements are multi-

vectors, that is directed numbers of mixed grade. It has a rich subspace structure with 
each subspace having algebraic properties and interpretations in a geometric or 
operational sense of representing entities of a certain grade, e.g. of higher order. 

2. It represents a geometry of interest. That means, it models geometric spaces equipped 
with basic geometric entities and a range of higher order geometric entities with useful 
algebraic properties. Besides, it represents a Clifford group the elements of which are 
linear operational entities. This makes non-linear operations in vector spaces to linear 
ones in the chosen GA. That is, both geometric and operational entities are elements of 
the algebra. 

3. A geometric algebra is equipped with a geometric product the action of which on multi-
vectors not only enables mappings into certain subspaces but from which also incidence 
algebraic operations between subspaces can be derived.  

This as a whole makes GA a powerful tool for modeling in robot vision and beyond. 

2.2 Basic Structure of Geometric Algebra 

Here we will only present a sketch of the rich structure represented by a geometric algebra. 
For more details see (Hestenes & Sobczyk, 1984) or the introduction paper (Hestenes et al., 
2001), respectively the tutorial report (Perwass & Hildenbrand, 2003). 
A geometric algebra  is a linear space of dimension 2n constructed from a vector space 

 with signature (p,q, r), n = p+q+r, which we denote  = . The algebra  is 
built by applying the geometric product to the basis vectors  of  , i = 1, . . .,n, 
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(1)

The GA  is called Euclidean for n = p and pseudo-Euclidean for n = p + q. In the case of 
r≠0, its metric is degenerate. The signature (p,q, r) is the key for selecting certain geometric 
properties of the GA. The geometric product is linear and associative but not commutative. 
The linear space of a GA is split into a rich subspace structure represented by a set of blades 
Bk of grade k. Given k independent vectors1 ai, i = 1, . . . , k, a k-blade is defined for k = 1,...,n 
by

(2)

Here  indicates the outer product. There are  different k-blades, each having its 
own direction given by . Hence, k-blades constitute directed linear 
subspaces of . In figure 1 we visualize the blade structure of , that is the GA of .
By considering next the simple example of the geometric product of two vectors a,b ∈
we will get an inductive access to the construction rule of multi-vectors as the algebraic 
entities of a geometric algebra.  

Figure 1. Blade structure of  

Here (· )k means the grade-operator which indicates the separation of the linear space 
into grade-k entities. Obviously, vectors are of grade one and  . Then we 
get with 

 (3) 
                                                                
1We use lower case letters, as , for algebra vectors or for vector space elements.
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a separation of the geometric product into the sum of the inner product 

(4)

and the outer product 

 (5)

The geometric product, a b, results in the sum of a scalar, (ab)0, and a bivector, (ab)2.
In contrast to the scalar product of vector algebra, the geometric product of geometric 
algebra is both grade-decreasing and grade-increasing. In general the multi-vector A is a 
mixture of k-vectors, Ak,

(6)

with

(7)

l* ≤ lk. For the geometric product of homogeneous multi-vectors of grades s and r we get a 
multi-vector C with a certain spectrum of different k-vectors,

(8)

with the pure inner product Ar · Bs = (ArBs)|r–s| and the pure outer product  = 
(ArBs)r+s. Hence, the other components result from mixing the inner and outer product. 
The blades of grade n are called pseudoscalar, P , 

(9)

with I being the unit pseudoscalar with I2 = ±1 if r = 0 and  being a scalar which equals the 
determinant of matrix algebra. Because I = IkIn–k, a blade Bk is related to its dual one, Bn–k, by 

(10)

This is a useful operation for switching between different representations of a multi-vector.  
There are several main algebra involutions in GA, like in case of complex numbers the only 
existing one is conjugation. Let us mention as an example the reversion. If  is a 
k-vector, then its reverse is defined as 

(11)

and the reserve of a multi-vector  defined as 

(12)

The reverse of a k-vector is needed for computing its magnitude, 

(13)
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and its inverse, 

(14)

Besides, it should be mentioned that any GA may be decomposed by 

(15)

into two partial spaces with  representing the odd grade blades and  representing the 
even grade blades and  being a GA itself again. 
There exist several isomorphisms of algebras. The most important statement is the existence 
of a certain matrix algebra for every GA (Porteous, 1995). In addition, the following 
isomorphisms are of practical importance: 

(16)
and

(17)

Examples of the last one are  and  with  being the 
algebra of complex numbers and  being the quaternion algebra. 

2.3 Geometric Algebra and its Tensor Notation 

We take a look beyond the symbolic level and question how we can realize the structure of 
geometric algebra numerically. We show a way that makes direct use of the tensor 
representation inherent in GA. 
If  denotes the 2n -dimensional algebra basis of , then a multi-vector  can 
be written as  , where  denotes the ith component of a vector2  and a sum 
over the repeated index i is implied. We use this Einstein summation convention also in the 
following. If  and  , then the components of C in the algebra equation 

 can be evaluated via . Here   is a placeholder for the algebra 
product and  is a tensor encoding this product (we use sans serif letters as 

 to denote vectors, matrices, tensors or generally any regular arrangement of 
numbers). If we define the matrices , as  and ,
then . This perfectly reveals the bilinearity of algebra products. 
We define a mapping Φ and can then write   or 
if  is an element of a Euclidian vector space,  as well. Note that we 
reduce the complexity of equations considerably by only mapping those components of 
multi-vectors that are actually needed. As an example, a vector in  can have at least n
non-zero components. Also, the outer product of two vectors will not produce 3-vector 
components, which can thus be disregarded. In the following we assume that Φ maps to the 
minimum number of components necessary. 

2.4 Conformal Geometric Algebra 

Recently it has been shown (Rosenhahn & Sommer, 2005a and 2005b) that the conformal 
geometry (Needham, 1997) is very attractive for most of the problems in robot vision, which 

                                                                
2At least numerically, there is no other way than representing multi-vectors as vectors.
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are related to shape modeling, projective geometry and kinematic. Conformal geometric 
algebra (CGA) delivers a non-linear representation of a Euclidean space with remarkable 
features:
First, CGA constitutes a unique framework for affine, projective and Euclidean geometry. 
Because the special Euclidean transformation (RBM) is a special affine transformation, we 
can handle either kinematic, projective or metric aspects of the problem at hand in the same 
algebraic frame. Second, the basic geometric entities of conformal geometry are spheres of 
dimension n. Other geometric entities as points, planes, lines, circles,... may be easily 
constructed. These entities are no longer set concepts of a vector space but elements of CGA. 
Third, the special Euclidean group is a subgroup of the conformal group, which is in CGA 
an orthogonal group. Therefore, its action on the above mentioned geometric entities will be 
a linear operation. Fourth, the inversion operation is another subgroup of the conformal 
group which can be advantageously used in robot vision. Fifth, CGA generalizes the 
incidence algebra of projective geometry with respect to the above mentioned geometric 
entities.
Before we enlighten the structure and features of CGA in more detail, we will have a short 
look on , the geometric algebra of the Euclidean 3D-space  . This will be the starting 
point for the mentioned non-linear representation in CGA. Additionally,  is the 
embedding framework for image analysis, which will be described in section 3. The basis of 
its 8- dimensional space is given by  

(18)

with  and  being the basis vectors of  with . Here the   constitute 
the unit 1-blades and the  constitute the unit 2-blades with , see figure 1. The 
unit pseudoscalar   squares according to .
The even subalgebra  is isomorphic to the quaternion algebra  according to equation 
(17). Its dimension is four and the basis is given by 

(19)

where i, j, k are the imaginary unit vectors of a quaternion. 
The conformal geometric algebra , is built by extending  with a so-called 
Minkowski plane , resulting in . Originally, this construction of the CGA of a 
pseudo-Euclidean space  which results in , was proposed and analyzed by 
(Angles, 1980). Only the work of (Li et al., 2001a) has been recognized by the robot vision 
community as valuable access to the interesting phenomena in a unique framework. The 
same authors presented also a CGA for spherical geometry (Li et al., 2001b) and a further 
generalization to cope with Euclidean, spherical and hyperbolic geometry (Li et al., 2001c). 
But the last two cases have not yet been studied in robot vision. 
The basis of the Euclidean CGA , is of dimension 32. That one of the extended space 

 contains as additional basis vectors  and  with .
Both basis vectors constitute the so-called orthonormal basis of the Minkowski plane. More 
attractive is to switch to the so-called null-basis  with  and  

. This has two reasons. First, both the origin of , represented by  
, and the point at infinity, represented by , are explicitly 

accessible. Second, a point x 4,1 of the Euclidian 3D-vector space  is mapped to a 
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conformal point (null vector) , with  and , by the embedding 
function

(20)

We denote these special vectors by capital letters as well. The mapping  builds a  
homogeneous representation of a stereographically projected point (Rosenhahn & Sommer, 
2005a). As a grade-1 entity, a point is a special sphere, S, (also of grade one) with radius 
zero. The dual representation of a sphere 

(21)

is of grade four and is defined by the outer product of four points. A circle as a 2-
dimensional sphere,  or  is defined by 

(22)

By replacing one point in the defining equations (21) or (22) by the point at infinity, , a 
plane, a line or a point pair (a one-dimensional sphere) may be derived. Most interesting for 
robot vision is the orthogonal representation in  of the elements of the conformal group 
C(3). All transformations belonging to the conformal group are linear ones and the null 
cone, that is the set of all null vectors, is invariant with respect to them. Let  be an 
element of the conformal group and   any entity which has to be transformed by 

. Then 

(23)

describes this transformation as a (bi-)linear mapping. In general, all algebraic entities with 
such sandwich product are called versors (Hestens et al., 2001). Given some conditions, 
certain versors are called spinors (representing rotation and dilation) and normalized 
spinors are called rotors (representing pure rotation). Interestingly, also translation has a 
rotor representation (called translator) in CGA. But the most interesting transformation 
belonging to the conformal group is inversion, see (Needham, 1997), because all other 
transformations can be derived from it. Let  be a unit sphere located at 
the origin , then the inversion of any conformal point   in the unit sphere is 
written

(24)

The elements of the rigid body motion in CGA are called motors, . They connect 
rotation, represented by a rotor R, and translation, represented by a translator T, in a 
multiplicative way, 

(25)

and can be interpreted as a general rotation (Rosenhahn & Sommer, 2005a). As all versors, 
they are concatenated multiplicatively. Let M = M2M1 be a sequence of two motors, then 

(26)

for all . Another important feature of linear operations in GA also applies for 
versors in CGA. It is the preservation of the outer product under linear transformation, 
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which is called outermorphism (Heestens, 1991). Let  be two spheres and 
 a circle. Then according to equations (22) and (23) the circle transforms under 

the action of a motor    as 

(27)

These last features of CGA turn out  to be very important for  robot vision applications as 
pose estimation, see (Rosenhahn & Sommer, 2005b) and (Gebken et al., 2006). Another 
important feature of CGA is the stratification of spaces according to (Faugeras, 1995) in one 
algebraic framework. Because 

(28)

with  being one possible representation of the projective space in GA, the change of the 
representations with the respective geometric aspects is a simple task, see (Rosenhahn & 
Sommer, 2005a). 

2.5 Conformal Embedding - the Stochastic Supplement 

We have to obey the rules of error propagation when we embed points by means of function 
, equation (20). Assume that point x is a random vector with a Gaussian distribution and 

is its mean value. Furthermore, we denote the 3×3 covariance matrix of x by Σx. Let  denote 
the expectation value operator, such that . The uncertain representative in 
conformal space, i.e. the stochastic supplement for , is determined by a sphere 
with imaginary radius 

(29)

rather than the pure conformal point . However, observing that 

 shows why our algorithms do not noticeably differ in the output when using an 
exact embedding or its approximation. We evaluate the corresponding 5×5 covariance 
matrix  for  by means of error propagation and find 

(30)

where we used the Jacobian of .

(31)
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3. Monogenic Curvature Tensor as Image Representation 

In this section we will describe how the embedding of local image analysis into a geometric 
algebra extends the representation in such a way that a rich set of local features will emerge. 

3.1 Overview: Local Spectral Representations 

Image analysis is a central task of robot vision systems. It is to a main portion local analysis. 
Image analysis based on local spectral representations (Granlund & Knutsson, 1995), that is 
amplitude and phase, has been a well-known method of signal processing for years. The 
aim is to assign a structural or/and geometric interpretation to an image point. That task of 
computing is called split of identity. In practice, a set of oriented bandpass operators are 
applied, each consisting of a pair of quadrature filters. The most well-known representative 
is the complex valued Gabor filter (Gabor, 1946). It delivers a complex valued signal 
representation, the analytic signal, from which for each chosen orientation at position 

 a local amplitude and a local phase can be derived. The local amplitude can be 
considered as a confidence measure of estimates of the local parity symmetry of the signal 
derived from local phase. Parity symmetry is a measure, which describes the type of 
structure. The method can be used for detecting lines and edges, analyzing textures, and 
with some restrictions for detecting corners and junctions. 
Regrettably, the analytic signal is neither rotation invariant nor sensitive to discriminate 
intrinsically 1D and 2D (i1D and i2D) structures. This has its reason in the fact that the 
analytic signal is indeed only a reasonable complex valued extension of one-dimensional 
functions. Therefore, with great endeavour the problems of orientation steerability 
(Freeman & Adelson, 1991) and of generalizing the Hilbert transform (Hahn, 1996) have 
been attacked. 
Only the consequent use of Clifford analysis (Brackx et al., 1982) led us to a multi- 
dimensional generalization of the analytic signal, called monogenic signal (Felsberg & 
Sommer, 2001) which overcomes the missing rotation invariance. But also that 
representation is incomplete with respect to represent intrinsically 2D structures, see the 
survey paper (Sommer & Zang, 2007). 
The monogenic curvature tensor (Zang & Sommer, 2007) further generalizes the monogenic 
signal. It delivers a local signal representation with the following features: 
• It enables classification of intrinsic dimension. 
• It delivers two curvature based signal representations which distinctly separate 

represent intrinsically 1D and 2D structures. One of these is identical to the monogenic 
signal. Two specific but comparable types of local amplitude and phase can be 
described. 

• In both cases the local phase constitutes a vector that includes also the orientation as a 
geometric feature. 

• In case of i2D structures, an angle of intersection can be derived from the derivations of 
phase angles. 

• Both curvature based signal representations can be embedded in a novel scale-space 
concept, the monogenic scale-space (Feldsberg & Sommer, 2004), in which local 
amplitude, phase and orientation become inherent features of a scale-space theory. This 
enables scale adaptive local image analysis. 
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All these efforts have been made because of the advantages of phase based image analysis 
for getting access to geometry and because of the illumination invariance of phase 
information. 

3.2 Monogenic Curvature Tensor 

The image representation we want to model should have some invariances: 
• Invariance with respect to intrinsic dimension: Both i1D and i2D structures can be 

modeled. This is possible by the curvature tensor of differential geometry (Koenderink 
& van Doorn, 1987).  

• Invariance with respect to parity symmetry: Both even and odd symmetric structures 
can be represented. This is possible by designing quadrature phase filters, whose 
harmonic conjugate component is in quadrature phase relation to the real valued 
component (Sommer & Zang, 2007). The way to get this is applying a (generalized) 
holomorphic extension of a real valued multi-dimensional function by a (generalized) 
Hilbert transform. 

• Invariance with respect to rotation: This becomes possible by specifying the generalized 
holomorphic extension by a monogenic extension (Felsberg & Sommer, 2001), whose 
operator realization is given by the Riesz transform (Stein & Weiss, 1971). 

• Invariance with respect to angle of intersection: Because of the involved differential 
geometric model, a local structure model for i2D structures is considered for i1D 
structures intersecting at arbitrary angles. 

• Invariance with respect to scale: This requires embedding of the image representation, 
respective of the operator which derives it into a monogenic scale-space (Felsberg & 
Sommer, 2004). 

Having these invariances in the image representation, in a second step of analysis the 
corresponding variances can be computed. These are intrinsic dimension, parity symmetry, 
rotation angle, angle of intersection and intrinsic scale at which these features exist. 
We will interpret a 2D-image as a surface in . Let be  the curvature tensor of the second 
fundamental theorem of differential geometry. Its Monge patch representation is given by 

(32)
with the Hesse matrix 

(33)

Then the Gaussian curvature, , and the mean curvature, , are 
spanning a basis in which the local signal f(x) can be classified according to its intrinsic 
dimension according to table 1. 

Type μ (Mean Curvature) κ (Gaussian Curvature) 
Elliptic (i2D)  κ  > 0 
Hyperbolic (i2D)  κ  < 0 
Parabolic (i1D) |μ| ≠ 0 κ  = 0 
Planar (i0D) |μ| = 0 κ  = 0 

Table 1. Surface type classification based on Gaussian and mean curvature 
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The signal representation we want to get is a kind of Hesse matrix in a monogenic 
representation. This requires two steps. First, according to (Felsberg & Sommer, 2001) we 
are embedding the originally scalar valued signal f(x) as a vector field f(x)  with values 
directed to the unit vector ,

(34)

Second, we are switching from the vector space  to the Euclidean geometric algebra 
 and are applying a monogenically extended Hessian operator, ,

which is a 2×2 matrix with monogenic elements. The convolution of the signal f with all 
elements of the operator matrix results in the monogenic curvature tensor 
as signal representation. To be more specific, see (Zang & Sommer, 2007), the monogenic 
Hessian operator may be splitted into an even operator, , with spinor valued 
elements and an odd operator,  which results from the even operator by 
applying the Riesz transform hR,

(35)

with

(36)

and

(37)

The monogenic Hessian operator may be interpreted as a rotation invariant and parity 
symmetry invariant detector of two i1D structures crossing invariant with respect to the 
angle of intersection. This involved structure model is the most general that could be 
developed. Nevertheless, it is limited by the model of differential geometry which does not 
consider derivatives of order higher than two. The structure of the monogenic Hessian 
operator reveals if we are going to the Fourier domain, take advantage of the derivative 
theorem of Fourier theory, and are modeling the operator in terms of circular harmonics of 
order n, , in polar coordinates u = (ρ, α),

(38)

Then we recognize that our model involves circular harmonics of orders n ∈ {0, 1, 2,3},

(39)

(40)
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As equations (35) and (40) reveal, the Riesz transform is identic to the first order circular 
harmonic, 

(41)

What remains for fulfilling the scale invariance requirement is embedding the monogenic 
Hessian operator into the monogenic scale-space (Felsberg & Sommer, 2004). This is 
achieved by replacing the radial component of circular harmonics, Cn (ρ), by a Difference-of-
Poisson kernel, HDOP,

(42)

with s1 < s2 being two different scale parameters. This results in circular harmonic bandpass 
functions

(43)

Finally, we get the monogenic curvature tensor  as 

(44)

respectively its representation in frequency domain. 

3.3 Analysis of the Monogenic Curvature Tensor 

Having the monogenic curvature tensor (in a scale-space embedding), it will now be 
analyzed with respect to the represented curvature information (Zang & Sommer, 2007). 
By computing the trace of , we get the monogenic mean curvature signal, fi1D (x):

, which is specific with respect to i1D structures. It may be written as a vector field 

 (45) 

(46)

which turns out to be identical to the monogenic signal (Felsberg & Sommer, 2001). 
By computing the determinant of , we get the generalized monogenic Gaussian 
curvature signal, fi2D (x): , which is specific with respect to i2D structures. In 
similar way as fi1D, it may be written as a vector field 

 (47) 

(48)

We call it ’generalized monogenic’ because its conjugate harmonic part results from the real 
part by applying c2 as generalized Hilbert transform with the result that the relations 
between de and do are different to those of te and to. Both signal representations can be 
interpreted as the result of a spinor valued operator, s, which rotates and scales the original 
vector field  so that it will be supplemented by a conjugate harmonic 
component which projects to the plane  and fulfills the conditions  and 

. The scaling-rotation is performed in the ’phase plane’ 
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with  being the respective spinor and  or . By evaluating 
the exponential representation of s with respect to the -logarithm, see (Felsberg, 2002), 
the local spectral representations can be computed. These are the local amplitude  

(49)

and the (generalized) monogenic local phase bivector 

(50)

From Φ(x) follow the local phase φ(x) as rotation angle within the phase plane, 

(51)

and the orientation angle θ(x) of the phase plane within the plane ,

(52)

In the case of fi1D, θ (x) is indicating the orientation of the i1D structure within the image 
plane and in the case of fi2D, 2θ (x) represents the local main orientation of the i2D structure 
in a double angle representation which results from the eigenvector decomposition of the 
structure tensor (Felsberg, 2002). Hence, phase analysis delivers also the orientation 
information as a consequence of the monogenic representation of the curvature tensor.  
In Figure 2, an example signal is analyzed with respect to its local spectral representations. 
The monogenic curvature tensor is obviously invariant with respect to rotation. In figure 3, 
two patterns of even and odd symmetric structures are analyzed with respect to local 
amplitudes and local phases for fi1D and fi2D, respectively. Clearly can be seen the 
invariances of the monogenic curvature tensor with respect to the intrinsic dimension, 
parity symmetry and angle of intersection. 
We will not discuss in detail the scale-space properties (Zang & Sommer, 2006a). It should 
only be mentioned that the embedding of the curvature tensor into a monogenic scale-space 
results in an improved corner detection based on a novel two-dimensional phase 
congruency method (Zang & Sommer, 2006b) and delivers superior estimates of the optical 
flow field based on a phase constrained variational approach (Zang et al., 2007). 

4. Parameter Estimation from Uncertain Data 

Uncertain data occurs almost invariably, especially in computer vision applications. It is 
hence a necessity to develop and use methods, which account for the errors in observational 
data. Here, we discuss a parameter estimation from uncertain data in the unified 
mathematical framework of geometric algebra. 
We use conformal geometric algebra (CGA) as introduced in section 2.4. Consequently, the 
estimation is applicable to (parameterizations of) geometric entities and geometric 
operators; points, lines, planes, circles or spheres can be treated in very much the same way 
as rotations or rigid body motions (RBM). In general, our aim is to find multi-vectors that 
satisfy a particular condition equation, which depends on a set of uncertain measurements. 
The specific problem and the type of multi-vector, representing a geometric entity or a 
geometric operator, determine the condition. In the language of CGA we obtain succinct 
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expressions and thanks to the bilinearity of the always involved geometric product, the 
corresponding equations are linear or at most quadratic in the multi-vector components. In 
section 2.3 we have introduced a simple way to represent geometric algebra operations in 
terms of a tensor notation, where the term tensor denotes the classical extension of matrix 
theory to higher dimensions. This allows us to use well-tried and efficient algorithms 
without leaving the algebra. Moreover, it paves the way for using the stochastic: standard 
error propagation, for example, is exact for the geometric product and makes it easily 
possible to keep track of the uncertainties while doing operations like an intersection. 

Figure 2. Top: original image (left), even and odd components of fi2D (middle and right). 
Bottom: local amplitude (left), local phase (middle) and local orientation (right) 

Figure 3. From left to right: original images, local amplitudes and local phases of the 
monogenic signal fi1D, local amplitudes and local phases of the generalized monogenic 
Gaussian curvature signal fi2D
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The stochastic is one of the fundamental aspects of this section. To account for the 
uncertainties in observational data we consequently decided on a least squares adjustment 
parameter estimation. We use the Gauss-Markov and the Gauss-Helmert method. Each of 
them provides an estimate together with a suitable covariance matrix. Hence, further 
calculations can be carried out with these uncertain elements, as mentioned above.  
This text builds on previous works by (Heuel, 2004) where uncertain points, lines and 
planes were treated in a unified manner, but not in GA. The linear estimation of rotation 
operators in GA was previously discussed in (Perwass & Sommer, 2002), albeit without 
taking account of uncertainty. In (Perwass et al., 2005) the estimation of uncertain general 
operators was introduced. 
The structure of this section is as follows: first, we explain the underlying parameter 
estimation methods. We then present two applications. For each, we demonstrate in which 
way we profit from the expressiveness of CGA and we explain how our method can be 
applied within that framework. 

4.1 Stochastic Estimation Method 

In the field of parameter estimation one usually parameterizes some physical process  in 
terms of a model  and a suitable parameter vector . The components of p are then to be 
estimated from a set of observations originating from .
Here, we introduce our two parameter estimation methods, the common Gauss-Markov 
method and the most generalized case of least squares adjustment, the Gauss-Helmert 
method. Both are founded on the respective homonymic linear models, cf. (Koch, 1997). The 
word ’adjustment’ puts emphasis on the fact that an estimation has to handle redundancy in 
observational data appropriately, i.e. to weight unreliable data to a lesser extend. In order to 
overcome the inherent noisiness of measurements one typically introduces a redundancy by 
taking much more measurements than necessary to describe the process. Each observation 
must have its own covariance matrix describing the corresponding Gaussian probability 
density function that is assumed to model the observational error. The determination of 
which is inferred from the knowledge of the underlying measurement process. The matrices 
serve as weights and thereby introduce a local error metric. 
The principle of least squares adjustment, i.e. to minimize the sum of squared weighted 
errors , is often denoted as 

(53)

where  is a covariance matrix assessing the confidence of .
Let  be a set of N observations, for which we introduce the abbreviation 

. Each observation  is associated with an appropriate covariance matrix . An 
entity, parameterized by a vector , is to be fitted to the observational data. Consequently, 
we define a condition function  which is supposed to be zero if the observations and 
the entity in demand fit algebraically. Besides, it is often inevitable to define constraints 

 on the parameter vector . This is necessary if there are functional dependencies 
within the parameters. Consider, for example, the parameterization of a Euclidian normal 
vector  using three variables  = [n1, n2, n3]T. A constraint T  = 1 could be avoided using 
spherical coordinates θ  and φ, i.e.  = [cosθ cosφ, ,cosθ sinφ, sinθ]. In the following sections, 
we refer to the functions  and  as G-constraint and H-constraint, respectively. 
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Note that most of the fitting problems in these sections are not linear but quadratic, i.e. the 
condition equations require a linearization and estimation becomes an iterative process. An 
important issue is thus the search for an initial estimate (starting point). If we know an 
already good estimate , we can make a linearization of the G-constraint yielding 

. Hence, with  and :
, which exactly matches the linear Gauss-Markov model. The 

minimization of equation (53) in conjunction with the Gauss-Markov model leads to the best 
linear unbiased estimator. Note that we have to leave the weighting out in equation (53), 
since our covariance matrices  do not match the . Subsequently, we consider a model 
which includes the weighting. 
If we take our observations as estimates, i.e.  , we can make a Taylor series 
expansion of first order at  yielding 

 (54) 

Similarly, with  we obtain , which exactly matches the 
linear Gauss-Helmert model. Note that the error term Δyi has been replaced by the linear 
combination ; the Gauss-Helmert differs from the Gauss-Markov model in 
that the observations have become random variables and are thus allowed to undergo small 
changes  to compensate for errors. But changes have to be kept minimal, as observations 
represent the best available. This is achieved by replacing equation (53) with 

(55)

where  is now considered as error vector. 
The minimization of (55) subject to the Gauss-Helmert model can be done using Lagrange 
multipliers. By introducing ,

 and   the Lagrange 
function Ψ, which is now to be minimized, becomes 

(56)

The last summand in Ψ corresponds to the linearized H-constraint, where  and 
 was used. That term can be omitted, if  has no functional dependencies. A 

differentiation of Ψ with respect to all variables gives an extensive matrix equation, which 
could already be solved. Nevertheless, it can be considerably reduced with the substitutions 

 and  . The resultant matrix 
equation is  free from  and can be solved for  

(57)

For the corrections , which are now minimal with respect to the Mahalanobis 
distance (55), we compute 
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(58)

It is an important by-product that the (pseudo-) inverse of the quadratic matrix in equation 
(57) contains the covariance matrix  belonging to . The similar solution for the 
Gauss-Markov model and the corresponding proofs and derivations can be found in (Koch, 
1997). Due to outstanding convergence properties we start iterating with the Gauss-Markov 
method. At the optimum we start the slower Gauss-Helmert method, which ultimately 
adjusts the estimate according to the uncertainties .

4.2 Fitting a Circle in 3D 

Now we show how the estimation method can be used in CGA to fit a circle in 3D-space to a 
set of N data points {b1..N}. Each data point is given with its mean bi and covariance matrix 

. In order to apply the estimation methods as described, we need a G-constraint and 
possibly an H-constraint. We therefore give an introduction to circles in CGA. 
We represent a circle by the inner product null space  of a 2-blade C. That space consists 
of all conformal points X, the inner product of which with the circle C is zero, i.e. 
=.  To understand this relationship, consider the inner product 
null space of a sphere Sr with radius r and center m. It can be created from a point 

 by subtracting the term  .  The sphere is thus 
given by . For some vector x it can be verified that 

iff . Now, consider two intersecting spheres S1 and S2. A 
circle intuitively consists of all points X lying on S1 and S2. Intersection can be expressed by 
the outer product and in fact the circle definition is . For a justification examine 
the inner product X· C

 (59) 

The terms cannot cancel each other if S1 S1 and S2 are linearly independent, i.e. if they do 
not represent the same sphere. The upper equation is therefore zero iff X is located on S1 and 
S2 as well. 
Remarkably, we have found an appropriate G-constraint right from the definition of the 
circle’s inner product null space itself. It remains to transfer the inner product expression  
X · C to an equivalent matrix expression. As there are ten basis blades of grade two in ,
we have  . The points {b1..N } are embedded and mapped as follows: 

. Note that our condition equation (59) yields a vector, being 
defined by five components in . Consequently, we obtain 

 (60) 

which can be differentiated easily. Thus, the required Jacobians  and  follow from 
the bilinearity of geometric algebra products in an implicit manner. 
Because a circle in 3D-space can be described by a minimum number of six parameters, we 
face a functional dependency of grade 4 = 10 – 6 within . As mentioned in section 4.1, we 
have to introduce constraints on the parameters, namely the H-constraint . We enforce C
to be a circle by requiring that , which can be shown to be sufficient. In almost the 
same way as for the G-constraint, the usage of Φ allows us to derive the -matrix. Being in 
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the possession of all necessary matrices, we are able to run the estimation in order to solve 
for the corrections  and .
We remain with this stage and refer the reader to the next estimation example. There, we 
explicitly derive the constraint functions in terms of the tensor notation. 
As mentioned earlier, our method provides the covariance matrix  of the estimated entity 

 as well. It shows up to which degree the model fits the observations and how 
advantageously they were initially distributed. It does not reflect to which extend the 
estimate deviates from a potentially perfect fit, i.e. it is no quality measure for our method. 
Figure 4 exemplarily shows the uncertainty of an estimated circle. The surrounding tubes, 
indicated by slices, show the standard deviation of the estimates. 

4.3 Fitting two Point Clouds in 3D 

In this part, we describe how the proposed methods can be used to estimate an RBM; it 
extends a rotation, given by a rotor, by a translational component along the axis of rotation. 
Hence, we can think of it as a screw motion, cf. (Rosenhahn, 2003). In geometric algebra an 
RBM is represented by an operator called motor. In the scope of pose estimation, the pose is 
uniquely characterized by an RBM. The estimation of motors is thus a first step towards the 
perspective pose estimation problem. 
Let {a1..N} and {b1..N} be two sets of N Euclidian points each. The latter represent the 
observations for which we have the covariance matrices . The set {a1..N} is assumed 
to have no uncertainty. Let  and  denote the conformal embedding 
of ai and bi, respectively. We search for the motor M, which best transforms all points in 
{A1..N} to the respective points in {B1..N}. The scenario is shown in figure 5.  
Using geometric algebra, we can easily write  cf. (Perwass & Sommer, 2002). 
Note that a motor is a unitary versor, i.e. it has to satisfy . Exploiting this fact, we 
rearrange the previous formula and obtain the G- constraint  

(61)

where we used  and . The tensor  encodes the 
geometric product. In order to evaluate the matrices  and , we differentiate equation  (61)  
with respect to  and , respectively. Hence, we get  and 

.
Since an RBM is defined by six rather than eight parameters, we need the H-constraint. We 
again exploit unitarity and choose . The tensor 

 encodes the reverse operation and  is zero, except for t = 1. Differentiation  yields 
. The estimate for M can now be computed by simply 

substituting the matrices ,  and  into the respective equations given in the 
theoretical part.
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Figure 4. Fitting a circle: four views of a circle’s uncertainty (standard deviation) 

Figure 5. Fitting two point clouds: the rotation of the motor M is indicated by the partial 
disc. The translational part is specified by the arrow attached to it 

5. Pose Estimation from Uncertain Omnidirectional Image Data 

We present a sophisticated application of the parameter estimation from uncertain data as 
depicted in the previous section. It reads ’perspective 2D-3D pose estimation for 
omnidirectional vision using line-plane correspondences’ and has strong geometrical 
streaks, which is why we spend an extra section. In this context, we introduce the ’inversion 
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camera model’, which has the ability to model a variety of distinct camera systems thereby 
taking image distortions into account. 
Pose estimation certainly is a well-studied subject, but not in case of an omnidirectional 
vision system. Hence, our objective was to develop accurate pose estimation for 
omnidirectional vision, given imprecise image features, i.e. 2D-sensory data. Note that these 
features can readily be detected by the method proposed in section 3. 
Comparable to triangulation, the accuracy of an estimated pose benefits when landmarks 
can be seen in clearly different directions. But the most significant advantages of 
omnidirectional vision are related to navigation, since the objects remain on the image plane 
under most camera movements. We consider a single viewpoint catadioptric vision sensor. 
It combines a customary camera with a parabolic mirror and provides a panoramical view 
of 360°.
We make the assumption to have 3D-models of the interesting objects we observe in the 
images. Secondly, we assume to know the one-to-one correspondences between the model 
features and the image features. Note that a model consists of 3D-lines, which mostly 
represent object edges, which in turn, are likely to generate a line under imaging; 
consequently, we have lines as image features. We herewith extend our previous work 
where we had been employing point features and point models. 

Figure 6. Fitting a triangle model to the projection planes spanned by R1, R2 and R3

5.1 Omnidirectional 2D-3D Pose Estimation 

Roughly speaking, rigidly moving an object in 3D such that it comes into agreement with 
2D-sensory data of a camera is called 2D-3D pose estimation (Grimson, 1990). Specifically, 
we estimate an RBM in 3D, such that the model lines come to lie on the projection planes of 
the underlying image lines, see figure 6. 
The method to be proposed comprises three steps: from those pixels corresponding to 
visible model lines, we estimate projection planes with associated uncertainties. In a second 
step, a simple algorithm is used to do prior rotation estimation being a first and rough guess 
at the rotational part of the desired RBM. As a result the model will be aligned such that its 
lines are nearly parallel to the respective projection planes. We finally estimate the entire 
pose taking the computed plane uncertainties into account as well. 
Before we explain those steps in detail, we give a sketch of catadioptric imaging. 
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5.2 Omnidirectional Imaging 

Consider a camera, focused at infinity, which looks upward at a parabolic mirror centered 
on its optical axis. This setup is shown in figure 7. A light ray emitted from world point Pw

that would pass through the focal point F of the parabolic mirror M, is reflected parallel to 
the central axis of M, to give point p2 on image plane π2. Now we use the simplification that 
a projection to sphere S with a subsequent stereographic projection to π1 produces an 
identical image on π1. Accordingly, point Pw maps to PS and further to p1, see figure 7. 
Together with the right side of figure 7 it is intuitively clear that infinitely extended lines 
form great circles on S. Moreover, a subsequent stereographic projection, being a conformal 
mapping, results in circles on the image plane, which then are no more concentric. For 
details refer to (Geyer & Daniilidis, 2001). 
Our approach exploits that the mapping from a projection ray to an image point is bijective 
and therefore invertible. Moreover, given an image line, we can compute its projection 
plane.

Figure 7. Left: mapping (cross-section) of a world point Pw: the image planes π1 and π2 are 
identical. Right: mapping of line L to Lπ via great circle LS on S. As an example, scattered 
image data belonging to Lπ  is shown 

5.3 Estimating Projection Planes 

We must come up with observations in the form of planes for a line-plane fitting; we 
compute a projection plane for each set of image points that corresponds to a visible model 
line. To be more specific, we estimate the planes from the stereographically back-projected 
image points. Hence, the points have to be moved to the projection sphere S, see figure 7. 
This is done by an inversion of the image points in a certain sphere SI. Note that the 
(uncertain) image points, initially identically 2D-distributed, thereby obtain distinct 3D-
uncertainties, which reflect the imaging geometry. The uncertainties are computed using 
error propagation, where we profit from the inversion being a linear operation in . The 
plane estimation can now be done by restricting the circle estimation, see section 4.2, to the 
three parameters describing the circle’s plane. Recall that we obtain a covariance matrix for 
each estimated plane. 
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5.4 Prior Model Alignment 

The line-plane pose estimation will prove to be a quadratic problem. In such cases, as 
mentioned in section 4.1, the linearization requires an initial estimate. The prior model 
alignment provides such a starting point at very low costs. We like to rotate the model such 
that the set of unit direction vectors  of its lines lie on the respective planes. Let 

 denote the set of normal vectors of all planes, which belong to visible model lines. 
We search for a rotation matrix  such that ˆ .
By Rodrigues’s formula (1840) we know that the rotation matrix  regarding a rotation of 
angle θ  around unit vector  can be expressed by an exponential map of 

 which is ,
where  denotes the 3×3 identity matrix. For small angles we obtain . With this 
relation and due to the skew symmetric structure of  it is possible to solve for 

, where each line-plane pair gives one line  in an 
overdetermined system of linear equations. Every run of this procedure yields a rotation 
matrix, the concatenation of which gives the desired rotation matrix . Once, the rotated 
lines are close enough to the planes w.r.t. some threshold the procedure can be stopped. 

5.5 Perspective Line-Plane Pose Estimation 

Here we derive geometric constraint equations for the stochastic estimation methods 
presented in the previous section. 
Let P be a projection plane, see section 5.3. For any line L lying on P , we have 

 A model line L’ is transformed by an RBM represented by M, say, via the operation 
. Therefore, if we have estimated the correct M, a model line L’ with corresponding 

projection plane P has to satisfy 
Using Φ from section 2.3, we can identify our elements P, L’ and M with particular vectors 

,  and . For example,  simply denotes the normal vector of the plane 
represented by P. We contract all constituent product tensors to one tensor  and obtain 
condition function  for one line-plane pair 

 (62) 

Algebraically, the constraint  may only be non-zero in four of its 25 = 32 components, 
which is why we have t ∈ {1,...,4}. The observations and parameters are  and ,
respectively. Hence, differentiating would yield the matrices  and  required 
in section 4.1. The eight components of M are an overparameterization, again, such that we 
need to include the H-constraint  from section 4.3. 

5.6 Inversion Camera Model 

The inversion camera model can be used for image rectification. Besides, it can readily be 
incorporated into the previously presented pose estimation methods as inversion embodies 
the main CGA operation. We briefly discuss both applications. 
We go on from section 5.2 in which we dealt with imaging. The considerations were limited 
to the special case of a parabolic catadioptric imaging system: a stereographic projection had 
been replaced by an inversion of the projection sphere S in a inversion sphere SI. This is one 
case of what the inversion camera model, which was proposed by (Perwass & Sommer, 
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2006), can handle. It basically expresses a projective mapping in terms of an inversion. It 
enables a continuous transition between different geometries of imaging, as fisheye optics or 
the classic pinhole camera, merely by changing two parameters. These determine the 
constellation of suitable spheres S and SI in respect to the focal point F. In addition to the left 
side of figure 7, which illustrates a parabolic catadioptric imaging system, figure 8 depicts 
two further interesting constellations. To demonstrate the versatility of the inversion camera 
model, recall the imaging principle described in section 5.2. It can equally be applied to the 
left side of figure 8, where the same operations describe a completely different camera 
system: ’point Pw maps to PS and further to p’.

Figure 8. Mapping schemes (cross-section) in terms of the inversion camera model. Left: 
setup reflecting a pinhole camera. Right: setup modeling a real lens by taking radial 
distortions into account. Namings are in concordance with figure 7; C denotes the center of 
SI

The aim of image rectification is to undo distortions which originate from a variety of 
optical imperfections. The right side of figure 8 shows the problem. The ray belonging to 
world point Pw was subjected to distortion which lead to the ray Rdev that eventually 
produced p. However, Rdev deviates from the geometrically true ray R in a non-linear 
manner depending on the angle to the optical axis. Hence a mapping has to be found that 
corrects the position of point p, within the image plane, such that it comes to lie on its 
projection ray R again.
We denote the rectified point prect. In (Perwass & Sommer, 2006), the authors discovered that 
moving off the inversion sphere SI from F , which distinguishes the mapping schemes in 
figure 8, results in a mapping suitable to model distortions. It consists of two parts. First a 
versor K, which essentially does the inversion of the image point p, is applied. Next, the 
corresponding ray R is constructed and intersected with image plane π to give prect.
Our subsequent considerations require a right handed coordinate system. The -axis
denotes the optical axis. It points upwards and is incident with F. The -axis points to the 
right and is aligned with the image plane. Hence, all image points lie on the -plane.
The inversion sphere  SI of radius r is defined by SI = , where we used 
the abbreviation . One of the simplest forms K can take on is K = SID. In order 
to handle scaling and for numerically well-balanced equations, the inversion in SI is 
preceded by the dilator D (isotropic scaling operator). The dilation operator D for a scaling 
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by a factor d  is given by D = 1 + γ E, where we defined γ = (d – 1)/(d+ 1). The image point 
transformation operator K is then given by 

(63)

with   and . Let  be the 
embedding of an image point p. Similar to figure 8, we denote  the point 
transformed by K. For determining the rectified point prect, as intended, it remains to 
intersect the projection ray R, now given by 

(64)

with the image plane π. The intersection is an elementary operation in CGA and yields the 
conformal point . Computing yields 

(65)

with the two parameters 

(66)

It is noteworthy that prect/β is the respective expression produced by the so-called division 
model. It was proposed by (Fitzgibbon, 2001) and can be considered equivalent to the 
camera inversion model. The division model itself was shown in (Claus & Fitzgibbon, 2005) 
to have a rectification quality comparable to a fourth order radial polynomial approach. The 
camera inversion model is thus a sufficiently good approximation of lens distortion for 
many applications. 
In (Perwass & Sommer, 2006), the estimation of lens distortion was successfully combined 
with pose estimation by means of the estimation methods presented in this text. Specifically, 
the pose, the focal length and the lens distortion were estimated at the same time. For 
example, in case of a point-line fitting a model point P’ is to be transformed by an RBM M
such that it comes to lie on the corresponding rectified projection ray R. In analogy to 
section 5.5 and with the help of equation (64) it is required for image point that 

(67)

A respective tensor representation can be derived easily, and the necessary constraints 
follow from differentiation. With this impressive example of the unifying nature of 
geometric algebra we conclude this chapter. 
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1. Introduction 

Methods of computed tomography are well developed and widely used in medicine and 
industry. If tomographic data are complete, it is possible to reconstruct the images with sub-
millimeter resolution. If the data are incomplete, tomograms may blur, i.e. their resolution 
degrades, noise increases and artifacts form. The situation is worst if measurement data are 
so poor that the system of equations which describe the discrete reconstruction problem 
appears to be strongly underdetermined. In this situation, images of acceptable quality can 
be obtained with algorithms that regularize the solution and use a priori information about 
the object, and do post-processing of reconstructed tomograms also with the use of a priori 
information, as a rule. This chapter provides two examples demonstrating the 
reconstruction of the internal structure of an object from strongly incomplete measurement 
data: few-view computed tomography (FVCT) and diffuse optical tomography (DOT) of 
strongly scattering media. The problem of reconstruction from a small number of 
views (<10) arises, for example, in experimental plasma research (Pickalov & Melnikova, 
1995) or nondestructive testing (Subbarao et al., 1997). DOT is now deemed to hold much 
promise for cancer detection (Arridge, 1999; Hawrysz & Sevick-Muraca, 2000; Yodh & 
Chance, 1995). Here the strong incompleteness of data is caused by the fact that the number 
of source-receiver relations that define the number of measurements is strictly limited. 
Despite that these types of tomography use different wavelength bands (X-ray and near 
infrared) and different mathematical models (linear and non-linear), we think it is not only 
possible, but also interesting to consider them together because in both cases we successfully 
use similar reconstruction algorithms and similar post-processing methods. The unique 
possibility to do that comes from the fact that in case of DOT, we use a simplified 
reconstruction method (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) 
reducing the inverse problem to a solution of the integral equation with integration along a 
conditional photon average trajectory (PAT) – an analog of the Radon transform in 
projection tomography.  
In case of FVCT, we use actual data from measurements in a simple experimental 
radiography setup (Konovalov et al., 2006 ). The FVCT procedure is simulated by rotation 
of the object from exposure to exposure about the centre of the reconstruction region. For 



Vision Systems: Applications 488

objects, we use a spatial resolution test and an iron sphere with quasi-symmetric cracks 
resulted from shock compression.  
In case of DOT, we use model data from the numerical solution of a time-dependent 
diffusion equation with an instantaneous point source (time-domain measurement 
technique). We consider a traditional geometry where sources and receivers are on the 
boundary of a scattering object in the form of a flat layer (Konovalov et al., 2006b). The 
object contains periodic structures created by circular absorbing inhomogeneities.  
In both cases, the inverse problem is solved using algebraic reconstruction techniques 
(additive and multiplicative) which we modernized to attain the better convergence of the 
iterative reconstruction process (Konovalov et al., 2006 ; 2006b). Procedures used to 
calculate the weight matrices are described in detail. Solution correction formulas are 
modified with respect to distributions of weight sums and solution correction numbers over 
image elements. Weighted smoothing is performed at each iteration of solution 
approximation. We use a priori information on whether the solution is non-negative and on 
the presence of structure-free zones in the reconstruction region.  
For post-processing of reconstructed tomograms, we use space-varying restoration 
(Konovalov et al., 2007), methods for enhancing informativity of images based on its 
nonlinear color interpretation (Mogilenskikh, 2000) and methods for estimating image 
informativity based on binary operations and visualization algorithms (Mogilenskikh & 
Pavlov, 2002; Mogilenskikh, 2003).  
Results of investigation help decide how spatial resolution depends on the degree of data 
incompleteness and draw inferences on whether the modified reconstruction techniques are 
effective and on the investigated post-processing methods are capable of making 
tomograms more informative.  
The chapter is organized as follows. Section 2 gives a general formulation of the 
tomography problem. It is shown that the inverse problem of DOT, like the problem of 
reconstruction from X-ray projections, can be reduced to a solution of an integral equation 
with integration along the trajectory. The Section describes a discrete model of a 2D 
reconstruction problem and modernized algebraic techniques. Section 3 gives examples of 
2D reconstruction from experimental radiographic data and model diffusion projections 
from optical inhomegeneities. The Section makes a quantitative analysis of the spatial 
resolution of tomograms reconstructed from strongly incomplete data. Section 4 describes 
post-processing methods and gives examples of their use.  Section 5 draws inferences and 
outlines further research in the area.  

2. Generality of our approach to reconstruction from strongly incomplete 
data

2.1 From the Radon transform to the fundamental equation of the PAT method 

The problem of reconstruction in computed tomography is known to be formulated as 
follows: find the best estimation of a function of spatial coordinates )(rf , called an object 
function, from a discrete set of its measured projections. Generally, each projection can be 
written as a weighting integral 

∞
= rdfwg 3)()( rr , (1) 
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where )(rw  is a weighting function which depends on source and receiver positions in 
space, the type of actual physical measurements and the way of data recording.  
In transmission X-ray tomography where the spatial distribution of the extinction coefficient 

)(rμ  is reconstructed, it is usually assumed that the weighting function is unity along a line 
L  connecting a point source and a point receiver, and zero elsewhere. Then expression (1) 
turns into the linear integral

=
L

dlg )(rμ . (2) 

In computed tomography, it is known as the Radon transform. Integral (2) is inverted with a 
linear reconstruction model implemented with the use of both integral algorithms (Kak & 
Slanay, 1988) and algebraic techniques (Herman, 1980).  
Divergence of the probing beam in, for example, proton (Hanson, 1981; 1982) or diffraction 
(Devaney, 1983) tomography makes it necessary to consider not a line but a narrow 3D strip 
of a finite length. In this case, it may be needed to change from linear integration (2) to 
volume one (1) and pose restrictions on the use of the linear reconstruction model.  
Diffuse optical tomography (DOT) of strongly scattering media is the most demonstrative 
example of non-linear tomography. Laser beams used for probing undergo multiple 
scattering, so photon trajectories are not regular and photons are distributed in the entire 
volume V under study. As a result, each point in the volume significantly contributes to the 
detected signal. If, for example, we deal with absorbing inhomogeneities of tissues 
examined by pulsed probing with the time-domain measurement technique, integral (1), in 
the approximation of the perturbation theory by Born or Rytov, takes the form (Lyubimov et 
al., 2002; 2003)  

→=
V a

t
ds rddtvPtg 3

0
)()],()0,(,[)( rrrr δμττ , (3) 

where t  is the time-gating delay of the receiver recording the signal, v  is the light velocity 
in the media, )],()0,(,[ tP ds rrr →τ  is the density of the conditional probability that a 

photon migrating from a space-time source point )0,( sr  to a space-time receiver point 
),( tdr  reaches an intermediate space point r  at time τ , and )(raδμ  is the distribution 

function of the absorbing inhomogeneities. Local linearization of the inverse problem of 
DOT is usually done with multi-step reconstruction algorithms based on the variational 
formulation of the radiation transport equation (or its diffusion approximation). The 
Newton-Raphson algorithm with the Levenberg-Marquardt iterative procedure (Arridge, 
1999) is a typical example of these algorithms. The multi-step algorithms provide a 
relatively high spatial resolution (~5 mm) for diffusion tomograms, but they are not as fast 
as required for real-time diagnostics because we have to solve a forward problem, i.e. the 
problem of propagation of radiation through matter, many times by adjusting at each 
linearization step the matrix of coefficients of a system of algebraic equations describing the 
discrete reconstruction model.  
There is a unique opportunity to accelerate the reconstruction procedure: to change in 
expression (3) from volume integration to integration along a conventional line connecting 
point source and point receiver. Using a probabilistic interpretation of light transfer by 
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means of the conditional probability density P , Lyubimov et al. (2002; 2003) proved that 
integral (3) could be presented as  

dl
lv

tg
L

Pa=
)(

)(
)(

rδμ
, (4) 

where L  is a curve defined by coordinates of the mass centers of the instantaneous 
distributions P  in accordance with  

rdtP
V ds

3)],()0,(,[)( →= rrrrR ττ , (5) 

which we call a photon average trajectory (PAT). Here l  is a distance along the PAT, )(lv  is 
the relative velocity of the mass center of the distribution P  along the PAT as a function of 
l ,            is the operator of averaging over the spatial distribution P . Integral equation (4) is 
a fundamental equation of the photon average trajectories method (PAT method) in case of 
time-domain measurement technique. It is an analog of Radon transform (2) and can be 
inverted with the fast algorithms of projection tomography. In other words, converting (3) 
into (4) offers an opportunity to change from multi-step to one-step reconstruction in the 
sense that the system of algebraic equations describing the discrete reconstruction model is 
only inverted once and hence, to achieve significant savings in computational time.  
Equation (4) has definitely a number of differences from equation (2), specifically:  
(a) Integration is performed along not a straight but curved line;  
(b) Under integral (4), there is a weighting distribution )(/1 lv  which depends on spatial 
coordinates; and 
(c) Trajectory integration is applied not to the object function itself, but to a function 
averaged over the spatial distribution P .
The latter means that the reconstructed image is degraded by a priori blur which requires 
additional work, i.e. post-processing of tomogram. With the above differences, it becomes 
clear that the inversion of equation (4) with the linear reconstruction model requires certain 
assumptions which may affect the quality of reconstructed images. Nevertheless, our earlier 
studies (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) and results 
presented in Sections 3 and 4 show that the PAT method is quite effective in the context of 
the tomogram quality versus reconstruction speed trade-off.  

2.2 Discrete image reconstruction model 

In medical applications of X-ray computed tomography, equation (2) is usually inverted by 
means of integral reconstruction algorithms such as the backprojection algorithm with 
convolution filtering (Kak & Slanay, 1988). In FVCT where the number of views is small, 
reconstruction with the integral algorithms gives aliasing artifacts which are present on 
tomograms as “rays” tangential to reproduced structures (Palamodov, 1990). Different 
smoothing and regularization methods can be applied to remove these artifacts which 
strongly restrict the resolution of small details. But the quality of reconstructed images still 
remains far from satisfactory.   
It is also difficult to invert equation (4) with integral algorithms. Here problems arise from 
not only incomplete data, but also from curved PATs. Our attempts to implement the 

P⋅
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backprojection algorithm for diffusion tomograms (Konovalov et al., 2003; 2007; Lyubimov 
et al., 2003) are based on the assumption that the PATs are almost straight lines inside the 
scattering object. But with this approach it is impossible to reconstruct the spatial 
distribution of absorbing inhomogeneities near boundaries where photons escape from the 
object like an avalanche and the PATs strongly bend.  
In this case, both in FVCT and in DOT, it is appropriate to use iterative algebraic algorithms 
implementing a discrete reconstruction model. In this chapter, without loss of generality, we 
will only consider examples of 2D reconstruction, i.e. reconstructions of 2D images. The 
generalized discrete model of 2D reconstruction is formulated traditionally (Herman, 1980). 
Let us establish a Cartesian grid for square image elements so that it covers the object. 
Assume that the reconstructed object function takes a constant value klf  in an element with 
indices k  and l  (hereafter, ),( lk -cell). Let ijL  be a straight line or PAT connecting 

i -source and j -receiver, and ijg  be a projection measured by j -receiver from i -source.

Then the discrete reconstruction model can be characterized by a system of linear algebraic 
equations

,
,

=
lk

klijklij fWg , (6) 

where ijklW  is the weight contributed by the ),( lk -cell to the measured value ijg . In the 

traditional setup of 2D reconstruction, the weight ijklW  is proportional to the length of 

intersection of the trajectory ijL  with the ),( lk -cell (Herman, 1980; Lyubimov et al., 2002). 
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Figure 1. Calculation of weights: (a) X-ray tomography; (b) DOT 

In this case, the matrix of coefficients of system (6) (hereafter,  weight matrix) appears to be 
highly sparce because each trajectory intersects very few cells. This fact markedly worsens 
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convergence of algorithms used to solve system (6) that is strongly underdetermined due to 
incomplete data. To reduce the number of zero elements in the matrix, we modernized the 
method for calculation of ijklW  having changed the infinite narrow trajectory by a strip of a 

finite width (Konovalov et al., 2006 ; 2006b). 
 In X-ray tomography, the strip is  long trapeze (Figure 1(a)). Its bases are source aperture 
(the linear size of the focal spot) and receiver aperture (as a rule, the intrinsic resolution of 
the recording system). In this case, the weights can be calculated with the formula  

δ/ijklijkl SW = , (7) 

where ijklS  is the area of intersection of the strip corresponding to i -source and j -receiver 

(hereafter, ),( ji -strip) with the ),( lk -cell, and δ  is the linear size of the cell. It is obvious 
that the calculation of  ijklS  for trapezoidal strips must not cause difficulty.  

The situation is more complicated in DOT. The configuration and size of the appropriate 
strip must be selected with account for the spatial distribution of the trajectories of photons 
migrating from the point )0,( sr  to the point ),( tdr . According to the above statistical 
model, the most probable trajectories are distributed in a zone defined by the standard root-
mean-square deviation (RMSD) from the PAT in accordance with the formula 

2/1
32

)],()0,(,[)()( →−=Δ rdtP
V ds rrrRr τττ . (8) 

This zone is shaped as a banana (Lyubimov et al., 2002; Volkonskii, 1999) with vertices at the 
points of source and receiver localizations on the boundary of the scattering object. 
Therefore, for the ),( ji -strip we take a banana-shaped strip (Figure 1(b)) whose width is 
directly proportional to the RMSD: )()( τγτε Δ⋅= . The problem is thus reduced to finding 
statistical characteristics (5) and (8) of photon trajectories. Note that the exact analytical 
calculation of )(τR  and )(τΔ  is difficult for even simple configurations such as a circle or a 
flat layer. The use of numerical techniques is undesirable because of the necessity to save 
computational time. Therefore, a number of simplifying assumptions should be done. 
Lyubimov et al. (2002) and Volkonskii et al. (1999) propose to approximate the PAT by a 
three-segment broken line whose end segments are orthogonal to the boundary of the 
scattering object and the middle segment connects the end ones. This approach is effective if 
inhomogeneities are located inside the object, but causes distortions if inhomogeneities are 
near the boundaries where the PATs bend. In this chapter we configure banana-shaped 
strips in the geometry of a flat layer using a simplified analytical approach based on the 
analysis of PAT bending near a plane boundary. The approach uses the time-dependent 
radiation transport equation in the diffusion approximation. Konovalov et al. (2006b) 
showed that in the case where a instantaneous point source was in a homogeneous half-
space (a half-plane in 2D) 0≥y  at a point ),0( 0y  and a receiver was at a point )0,( 0x  on 
the boundary 0=y , coordinates of the mass center of the distribution P , moving from the 
source point to the receiver point could be expressed as  
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where 2
04 yKvt=α , K  is the diffusion coefficient of the media, )(erf ξ  is the probability 

integral. If assume that PAT bending near the plane (straight line) of a source S  is similar to 
bending near the plane (straight line) of a receiver D  and there is no influence of the 
opposite boundary, analytical expressions (9) can be easily used to construct the PAT for the 
flat layer geometry (Figure 2). Indeed, the mass center passes the distance SO  and the 
distance OD  during the time 2/t . If the mass center moved in the half-space 0≥y  from a 
point 0S  to the point D  through the point O , the time 2/t  would correspond to the 
distance OS0 .  Since component velocity along the X-axis is constant, the point 0S  lies on 
the perpendicular SS ′  to the media boundaries. The distance SS ′0  can be found through 
the numerical solution of the equation 2/

2/
dY

t
=

=τ
, where d  is the width of the layer, for 

0y  (see expressions (9)). After that the distance OD  is calculated with (9) and the distance 
SO  is obtained through its symmetric reflection about the point O .

x

 y
 S

 S0  O

 S ’ D

Figure 2. PAT construction for a flat layer Figure 3.  Geometry of data recording for a 
rectangular object 

Figure 3 shows the geometry of data recording we chosen for simulations. Red triangles 
denote the positions of sources and blue circles do the positions of receivers. It also shows, 
as examples, six average trajectories reproduced with the above algorithm for 3000=t  ps 
and optical parameters 066.0=K  cm and 0214.0=v  cm/ps. Blue lines show piecewise-
linear approximations of the PATs. Coordinates of the indicated sources and receivers (in 
centimeters) are as follows: S5 – (-2.52, 4), D17 – (-5, -4), D20 – (-3.06, -4), D23 – (-1.13, -4), 
D26 – (0.81, -4), D29 – (2.74, -4), D32 – (4.68, -4). In this chapter we study the probing regime 
in transmission, i.e. only relations between sources and receivers located on the opposite 
boundaries of the object are considered. The total number of average trajectories therefore 

2

-2

2 4-2-4 Xx, m

Yy, m
S5

D17 D20 D23 D26 D29 D32
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equals to 32×16 (32 sources and 16 receivers). In the reconstruction we will vary the number 
of sources to study how the spatial resolution depends on the degree of data 
incompleteness.  
High accuracy of RMSD calculation is not crucial for the construction of banana-shaped 
strips. Therefore, in accordance with the inference of Volkonskii et al. (1999) that RMSD is 
actually independent of the form of the object, we can use the following simple formula for 
infinite space:  

[ ] 2/1
/)(2)( ttKv τττ −≅Δ . (10) 

Boundaries of banana-shaped strips are defined as follows.  
(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at PAT points corresponding to times }{ pτ
(Figure 4).
(c) Lay off sections of the length )( pτε  in both directions along each perpendicular.  

(d) Construct lines connecting the points which we obtained for different }{ pτ .

Figure 4. Definition of boundaries for 
banana-shaped strip 

Figure 5. Definition of the discrete relative 
velocities of mass center of the distribution P

Boundaries of the strips are thus defined by piecewise-linear functions. To calculate the 
areas ijklS , we find the points where the strip boundaries intersect the sides of the cell. A 

polygon with vertices at the obtained points and cell nodes is treated as the intersection of 
the ),( ji -strip and the ),( lk -cell (Figure 1(b)). Weights are calculated with the formula  

)/( δijklijklijkl vSW =  (11) 

where ijklv  is the discrete velocity of the mass center of the distribution P  for the 

),( ji -strip and the ),( lk -cell. Analytically, the velocities )( pv τ  are determined through 
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differentiation of expressions (9). The array of discrete values }{ ijklv  is defined with the 

following algorithm.  
(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at points of ijL  corresponding to the 

times }{ pτ  (Figure 5).  

(c) Assign a loop for p , in which the following sequence of steps is performed:  
• Find cells where the ),( ji -strip intercepts a strip created by two neighbor 

perpendiculars corresponding to the times pτ  and 1+pτ . In Figure 5, these cells 

are shown in green.  
• To all cells found, assign a value which equals the velocity averaged over two 

times: 2/)]()([ 1++ pp vv ττ .

• If some value old
ijklv  has already been assigned to a cell, it is updated with the 

formula

1+
+⋅

=
N

vNv
v

new
ijkl

old
ijkl

ijkl , (12) 

where new
ijklv  is the new value and N  is the number of previous updates.  

Figure 6. The area of the object filled with banana-shaped strips for different values of 
coefficient γ : (a) – 0; (b) – 0.05; (c) – 0.15; and (d) – 0.25 

a b 

c d 
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(d) All PATs are searched sequentially and, for each of them, the procedure is repeated 
beginning from step (b).  
The proportionality coefficient )1,0(∈γ  which defines the width of the banana-shaped 
strip is selected from a condition dictating that all strips must sufficiently fill the area of the 
object. Figure 6 shows the filling of the rectangular object presented in Figure 3 for ratio of 
sources and receivers (hereafter, measurement ratio) 32×16 and γ  equal to 0, 0.05, 0.15, and 
0.25. In Figure 6(a), (b), and (c), there are extended regions with no strips (shown in blue). 
This means that, if the grid is of high resolution, there are cells where corrections won’t be 
introduced during the process of reconstruction. In Figure 6(d) these regions are very small 
in size which minimizes the probability that “dead” cells will appear. That is why we 
reconstruct the absorbing inhomogeneities embedded in the scattering object shown in 
Figure 3 using banana-shaped strips whose width is )(25.0)( ττε Δ= .
It should be noted that the problem of area filling in FVCT is not as decisive as in DOT if 
even the strips are very narrow. Despite the small number of views, the number of strips 
corresponding to one view is rather large (> 100).  

2.3 Algebraic reconstruction techniques and methods of their modification 

When selecting an algorithm to invert system (6), we must remember that in case of very 
incomplete data, the system appears to be strongly underdetermined. That is why the 
problem of solution regularization is of great importance in the context of the need to 
approximate the solution correctly and hence, to obtain tomograms which are free of 
artifacts. It is well known that the minimum of artifacts corresponds to the minimum of 
information contained in images. Under these circumstances, it seems appropriate to do 
reconstruction with an approach based on entropy optimization (Levine & Tribus, 1978). In 
this chapter we study the multiplicative algebraic reconstruction technique (MART) which 
implements the entropy maximum method. The problem of solution regularization is 
formulated as follows. Find the array of values }{ klf  which satisfies system (6) and the 
conditions  

maxln,0
,

→≥
lk

klklkl fff . (13) 

For the purpose of comparison and to demonstrate advantages of the MART, we also 
consider a well-known additive algebraic reconstruction technique (AART) which does not 
optimize entropy.  
Both MART and AART are based on an iterative procedure of correction of certain initial 
approximation }{

)0(
klf . At each )1( +s -iteration trajectories (strips) from one source only are 

considered. Thus, the correction is introduced into the elements of the approximation 
}{

)(s
klf  which correspond to the cells intersected by the given strips. Upon a transition from 

one iteration to another, the sources are searched cyclically. Original formulas for the 
correction of the s -th approximation to the solution are written as follows (Herman, 1980) 
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where )1,0(∈λ  is the parmeter which controls the rate of iterative process convergence and 

F⋅  is the Frobenius norm. 

Our experience of using the algebraic techniques in FVCT (Konovalov et al., 2006a) and 
DOT (Konovalov et al., 2006b; Lyubimov et al., 2002) suggests that a number of 
modifications to formulas (14) are needed to improve convergence in case of strongly 
incomplete data.  So, expressions (14) does not allow for  
(a) the non-uniform distributions of weight sums and solution correction numbers over the 
cells; and 
(b) any a priori information on the spatial distribution of reproduced structures.  
As a result, both algorithms including the MART with regularization (13) often converge to 
a wrong solution. Because of the incorrect redistribution of intensity, images exhibit distinct 
artifacts which are often present in the regions where the structures are actually absent.  
To avoid these shortcomings, we here use the following formulas for modified algebraic 
techniques  
Step 1 
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where Lji ijklkl NWW =
,

~
 is the reduced weight sum for the ),( lk -cell, LN  is the total 

number of strips used in reconstruction, and w  is the matrix of correction factors which 
allow for a priori information on the object function (see below).  
Step 2 
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where the integer r  specifies the size rr ×  of the smoothing window, klA  is the number of 
corrections to the solution element corresponding to the ),( lk -cell, and  

−−= )(min)(max)(min)norm(
,,,

kllkkl
lk

kllkklkl ξξξξξ  (17) 

is the operator which normalizes the distributions }
~

{ klW  and }{ klA .



Vision Systems: Applications 498

Accounting for the distributions of reduced weight sums and correction numbers over the 
cells is most crucial for DOT where they are markedly non-uniform (Figure 7). Figure 8 
shows an example of reconstruction of the scattering object with two circular absorbing 
inhomogeneities 0.8 cm in diameters (see Section 3.2). Here and after the red triangles 
represent the localizations of the sources used for reconstruction. The Figure demonstrates 
advantages of the modified MART. We have bad results without taking into account the 
distributions }

~
{ klW  and }{ klA  (Figure 8 (b) and (c)).  

Figure 7. Distributions of reduced weight sums (a) and solution correction numbers (b) over 
137×100 grid which cover the object shown in Figure 3  

a

b c 

Figure 8. The 0.8-cm-in-diam absorbing inhomogeneities defined on a triangular mesh (a) 
and results of their reconstruction by the MART: without (b) and with (c) the distributions 

}
~

{ klW  and }{ klA

To use a priori information on the presence of structure-free zones in the reconstruction 
region, we developed an algorithm illustrated by Figure 9 which shows the reconstruction 
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of the middle section of the iron sphere compressed by an explosion from radiographic data 
(see Section 3.1). The algorithm is described by the following sequence of steps:  
(a) Reconstruct the image }{ 1

klf  from projections corresponding to the first source only 
(Figure 9 ( )).

a b 

c d 

Figure 9. Generation of a useful part of the tomogram: (a) – the image }{ 1
klf ; (b) – the image 

}
~

{ 2
klf ; (c) – the image }

~
{ 24

klf ; (d) – the set of multilevel regions  

b) Reconstruct the image }{ 2
klf  from projections corresponding to the second source only 

and compare it with the result obtained at step (a). Following from the result of the 
comparison, form the image }

~
{ 2

klf  such that ),min(
~ 212

klklkl fff =  for each ),( lk -cell
(Figure 9(b)).
 (c) Repeat step (b) for each following i -source forming the image }

~
{ i

klf  such that 

),
~

min(
~ 1 i

kl
i

kl
i

kl fff −=  (Figure 9(c)). Search all given sources.   



Vision Systems: Applications 500

(d) For the last image }
~

{ last
klf , define certain ascending sequence of relative thresholds 

M
m 1}{ε , the largest of which does not exceed, for example, 0.1-0.2 and determine correction 

factors }{ klw  using the following relations:  
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a b 

Figure 10. Reconstructions of the sphere section from 24 views by the MART without (a) and 
with (b) the correction factors }{ klw

Such a definition of the set of multilevel regions with values that monotonically decrease 
from unity to zero (Figure 9(d)) allows artifacts to be avoid in the structure-free zones, i.e. 
where the object function must be zero or close to zero. The effect of accounting for }{ klw  is 
demonstrated in Figure 10 which illustrates the reconstruction of the section of a sphere 
from 24 views by the MART. For visual demonstration, reconstructions are presented as 
surface plots.  
It should be noted that in the case of the AART, it is also appropriate to use a priori 
information on whether the reconstructed object function is non-negative. For this end, all 
negative elements in the solution approximation are changed by zeros at each iteration. In 
the case of the MART, this is not needed because the algorithm works with a priori positive 
values.

3. Examples of reconstruction of test objects and quantitative analysis of 
tomograms

3.1 Reconstruction of strongly absorbing structures from few X-ray views  

This section gives examples of 2D reconstruction of objects with strongly absorbing 
structures from experimental radiographic data. The objects include  
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(a) a foam plastic cylinder 6 cm in diameter with periodical spatial structures in the form of 
rows of coaxial thin steel rods whose diameters are 1.5, 2.5, 5 and 8 mm, and  
(b) an iron sphere 4.8 cm in diameter with lots of internal damages from shock compression.  
X-ray projections are detected with a simple experimental setup (Figure 11 (a)). The 
radiation source is a pocket-size betatron with a small focal spot (about 1 mm) and a 
relatively small effective energy of the photon spectrum (about 2 MeV). The recording 
system combines a luminescent amplifying screen and an X-ray film. The object is placed 
between the source and the recording system so as to ensure that the film fully covers the 
object’s shadow. To determine parameters of the characteristic curve of the recording system 
(photometric density versus exposure), we register the image of a step lead wedge with the 
object, as shown in Figure 11. Distances between the source and the object and between the 
source and the recording system are, respectively, 150 and 220 cm for the cylinder with 
periodic structures and 120 and 180 cm for the shocked sphere.  

1 2 3 4

1 - Recording system
2 - Wedge
3 - Test object
4 - Radiation source

a b 

Figure 11. Experimental setup (a) and X-ray photograph of the shocked iron sphere (b)  

To collect information, each film with the X-ray image is scanned using a laser scanner with 
a small focal spot. Digital data collected are converted from scanner counts into film 
exposures with a technique (Kozlovskii, 2006) developed and experimentally adjusted at 
Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics. The technique is 
based on the approximation of the characteristic curve by the relation  

)lgexp(max0

cHbaIII −⋅−+= , (19) 

where I  is the photometric density, H  is the exposure, 0I  is a parameter which 
characterizes the density of film fogging, maxI  is a parameter which characterizes the 
maximum density the film permits, a  and c  are inclination and shape parameters, and b
is a parameter which defines sensitivity of the recording system. The characteristic curve 
parameters I , maxI , a , b  and c  are found through solving the problem of optimization 
for the objective function  
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where iI  is the photometric density calculated by expression (19) for i -step on the wedge, 
meas
iI  is the experimental density found with the image of the step wedge (Figure 11(b)) and 

Z  is the number of steps on the wedge. 
MART AART 

12

8

6

4

Figure 12. Tomograms of a cross section of the cylinder with periodic structures 
reconstructed from 12, 8, 6, and 4 views 
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a b 

c d 

Figure 13. A photograph of the middle section of the sphere (a) and its reconstructions by 
the modified MART from 24 (b), 12 (c), and 8 (d) views 

 We assume that each X-ray in the conic beam is detected by a conventional receiver whose 
aperture is larger than the size of one cell of the digitized x-ray photograph. It is appropriate 
to take the aperture to be equal to the intrinsic resolution of the recording system. So, in 
order to calculate projections, we must average the exposures H  over aperture areas. 
Projections are calculated as  

)log( 0HHg −= , (21) 

where 0H  is film exposure without the object (background).  
Figure 12 shows the tomograms of a cross section of the cylinder with periodic structures 
reconstructed from the 1D arrays of projections by the modified MART and AART 
described in Section 2.3. On the left of the Figure there are the numbers of views used for the 
reconstruction. It is seen that the quality of reconstructions by the entropy optimizing 
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MART is a bit better than that of the images reconstructed by the AART. For the images 
shown in Figure 12, the visual resolution limit seems to be close to 1.5 mm because the row 
of 1.5-mm-diam rods is clearly seen in the upper images (MART, 12 and 8 views; AART, 
12 views) and hardly distinguishable in the others. The quantitative analysis of spatial 
resolution is given in Section 3.3.  
Figure 13 shows the tomograms of a middle section of the shocked sphere reconstructed by 
the modified MART in comparison with its photo taken after the sphere was cut with an 
elecroerosion machine. It is seen from Figure 13 (a) and (b) that 24 views allow quite 
accurate reproduction of a fine fracture pattern (characterizing the reproduction of high-
frequency structures) to be obtained. The images in Figure 13 (c) and (d) well reproduce the 
fracture pattern on whole, but small details are reproduced much worse compared with 
Figure 13(b). 
Tomograms presented in Figure 13 qualitatively differ from those in Figure 12: the spatial 
structures in the sphere “drop” in reconstruction, i.e. the structures in the center are 
reproduced less intensively than the structures near its boundary. This is caused by the effect 
of beam hardening (Kak & Slanay, 1988) which distinctly manifests itself in the reconstruction 
of strongly absorbing objects. This proves that tomograms need post-processing. 

3.2 Reconstruction of optical inhomogeneities embedded in strongly scattering media 
from model diffusion projections  

To demonstrate efficiency of the modified algebraic algorithms for one-step reconstruction 
of diffuse optical tomograms, we conduct a numerical experiment where we simulate 
scattering objects with absorbing inhomogeneities and calculate diffusion projections. Four 
square objects 11×8 cm2 in size (Figure 3) are considered. Light velocity in the media and 
diffusion and absorption coefficients are 0.0214 cm/ps and 0.066 cm and 0.05 cm-1,
respectively. Each object has two circular inhomogeneities of identical diameters; they are 
near the center at a distance of one diameter from each other. Diameters of inhomogeneities 
in different objects are 1.2, 1.0, 0.8 and 0.6 cm. The inhomogeneity absorption coefficient is 
equal to 0.075 cm-1. To simulate diffusion projections, we solve the time-dependent diffusion 
equation with the instantaneous point source  
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for the photon density ),( τϕ r  by the finite element method. The signal of the receiver is 
found with the formula  
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where η∂∂  is the derivative in the direction of the outer normal to the boundary of the 
object at the receiver point drr = . Accordingly, the diffusion projection )(tg  is found as 
logarithm of the ratio of the non-perturbed signal )(0 tJ  calculated for the homogeneous 
medium to the signal )(tJ  perturbed due to inhomogeneities.  
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 MART AART 

1.2

1.0

0.8

0.6

Figure 14. Reconstructions of scattering objects for measurement ratio 32×16 

Figure 14 demonstrates the reconstructions of scattering objects by the modified MART and 
AART for measurement ratio 32×16 from diffusion projections calculated for the time-gating 
delay 300=t  ps. Diameters of inhomogeneities in cm are shown on the left of the Figure. It 
is seen that the AART that does not optimize entropy is a bit less accurate than the MART 
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in the reproduction of spatial structures. In all tomograms, inhomogeneities are deformed 
(elongated) because of averaging over the spatial distribution of photons. This makes it 
necessary to apply post-processing methods to neutralize such blur. To investigate how the 
degree of data incompleteness influences the quality of tomograms, we reconstruct 
scattering objects for measurement ratios 16×16, 8×16 and 4×16. As an example, Figure 15 
shows a reconstructed object with inhomogeneities 0.8 cm in diameter. The number of 
sources is given on the left of the Figure. It is seen that in case of 4 sources (the lower row of 
images), the inhomogeneities are falsely shifted and not resolved relative each other in the 
case of the AART. The quantitative analysis of spatial resolution is discussed in Section 3.3. 

 MART AART 

16

8

4

Figure 15. Reconstructions of the object with 0.8-cm-diam inhomogeneities for measurement 
ratios 16×16, 8×16, and 4×16 
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3.3 Quantitative analysis of tomogram resolution  

In parallel beam projection tomography, the visualization system is usually described with a 
model of a linear filter invariant to spatial shift (Papoulis, 1968). The model allows the 
spatial resolution to be evaluated using a modulation transfer function (MTF) defined as the 
amplitude of system response to the harmonic signal. In the strict sense, the spatially 
invariant model is not applicable either in FVCT (because of fan beam geometry and 
strongly incomplete data), or in DOT (no regular straight photon trajectories). That is why, 
in this Section, we use the MTF only for the rough estimation of the resolution limit. On the 
contrary, in Section 4.1, blur of diffuse optical tomograms is neutralized with a spatially 
variant model which accounts for the dependence of spatial resolution on inhomogeneity 
localization.  
To estimate the resolution from images of periodical spatial structures, we use the standard 
technique described, for example, by Konovalov et al. (2006a) and Lyubimov et al. (2002). 
From the profile of each reconstructed row of rods (Figure 12) or inhomogeneities (Figure 14 
and Figure 15), we define the modulation transfer coefficient (MTC) as the average relative 
depth of the valley between peaks. The discrete spatial frequencies are assigned to diameters 
of the rods (inhomogeneities). A dependence of the MTC on spatial frequency is taken as an 
estimate to the MTF. Figure 16 (FVCT) and Figure 17 (DOT) illustrate the MTFs 
characterizing accuracy at which spatial structures are reconstructed from incomplete data 
by the modified MART and AART. It is seen that all curves from MART (red lines) run 
higher than those from AART (black lines), proving that the multiplicative algorithm that 
optimizes entropy is less restrictive in the reproduction of high-frequency spatial structures 
than the additive algorithm. So, for example, in reconstruction from 4 views (Figure 16(d)), 
20% contrast (the conventional visual resolution limit (Papoulis, 1968)) corresponds to 
spatial frequencies 3.4 and 1.9 cycles/cm, if MART and AART are used. That is, if we are 
limited to 4 views, only spatial structures whose linear sizes are larger than 1.5 and 2.6 mm 
can be resolved in images reconstructed by the multiplicative and additive algebraic 
algorithms, respectively. Table 1 contains the estimates of the spatial resolution limit 
obtained in this manner from Figure 16 and Figure 17. Digits in brackets present similar 
estimates from the blue curves constructed for MART tomograms after space-varying 
restoration (see Section 4.1).  

Reconstruction technique 
Tomography type Number of views (sources)

MART AART 

12 1.0 1.5 

8 1.2 1.6 

6 1.4 2.5 
FVC

4 1.5 2.6 

32 7.0 (6.0) 8.6 

16 8.1 (6.4) 10.0 

8 8.2 (6.8) 10.1 
DOT

4 9.0 (7.0) 12.6 

Table 1.  Estimated spatial resolution limit (in millimeters) for FVCT and DOT 
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Figure 16. FVCT: MTFs for MART (red lines) and AART (black lines): (a) – 12; (b) – 8; (c) – 6; 
and (d) - 4 views 
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Figure 17. DOT: MTFs for MART (red lines), AART (black lines), and MART after restoration 
(blue lines): (a) – 32×16; (b) – 16×16; (c) – 8×16; and (d) - 4×16 sources and receivers 

Analysis of data presented in the Table suggests that the use of the modified MART in FVCT 
helps get close to the resolution of medical X-ray tomography which uses the full set of 
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views. As for DOT, the resolution of the PAT method reached again with the modified 
MART is only slightly worse than the resolution of tomograms reconstructed by the multi-
step reconstruction algorithms (Arridge, 1999) and there is still hope to improve it through 
post-processing.  

4. Post-processing of tomograms 

4.1 Space-varying restoration  

As mentioned in Section 3.3, the strict description of the visualization system both in FVCT 
and DOT can only be made with a spatially variant blur model. In FVCT, spatial variance at 
a rough approximation can be neglected because the size of the object is small compared to 
source-object and object-receiver distances. In DOT, the strong dependence of structure 
reconstruction accuracy on structure localization directly follows from expressions (8) and 
(10) which characterize the theoretical limit of spatial resolution. The theoretical resolution 
tends to zero near boundaries. In the center, the resolution is worst and depends on the 
degree of data incompleteness (Table 1).  
The traditional approach (Fish et al., 1996) to the restoration of images degraded by spatially 
variant blur is based on the assumption that blur is approximately spatially invariant in 
small regions of the image. Each such region is restored with its own spatially invariant 
point spread function (PSF) and results are then sewn together to obtain the full true image. 
This approach gives blocking artifacts at the region boundaries and they need to be removed 
by some means or other. In this chapter we restore diffusion tomograms using the blur 
model of Nagy et al. (2004). In accordance with the model, the image is divided into a 
number of regions where the PSF is approximately spatially invariant. However, instead of 
deblurring each region separately and then combining restoration results, the method 
interpolates individual invariant PSFs and restores the entire image. The discrete restoration 
problem for a tomogram with blur f  is described by a system of linear algebraic equations  

zQf ⋅= , (24) 

where Q  is a large, ill-conditioned matrix describing the blurring operator and, z  is a 
discrete representation of the true image. Matrix Q  contains all non-zero elements of each 
of the spatially invariant PSF assigned to the individual regions of the tomogram. Q  also 
accounts for a priori information on the extrapolation of the restored image beyond its 
boundaries, i.e. boundary conditions. This is necessary to compensate for near-boundary 
artifacts caused by Gibbs effect. So, for example, in the case of reflexive boundary conditions 
that we use for restoration, Q  is the sum of the banded block Toeplitz matrix with banded 
Toeplitz blocks (Kamm & Nagy, 1998) and the banded block Hankel matrix with banded 
Hankel blocks (Ng et al., 1999).  
Each spatially invariant PSF assigned to an individual region of the diffusion tomogram is 
simulated by performing the following sequence of steps. 
(a) On a triangular mesh, we define a point inhomogeneity by three equal values in the 
nodes of a triangle located at the center of the region. The amplitude of the inhomogeneity is 
an order of magnitude larger than the amplitude )(raδμ .
 (b) Diffusion projections from the point inhomogeneity are simulated trough the solution of 
equation (22) with the finite element method.  
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(c) A tomogram with PSF is reconstructed from obtained model projections by the modified 
algebraic techniques described above.  
For the inversion of system (24), we selected the iterative residual norm steepest descent 
algorithm (Kaufman, 1993) that converges rather fast and has a semi-convergence with 
respect to the relative error zzz −s , where sz  is the approximation to z  on 
s  -iteration. This is of great importance for getting the regularized solution. Here we omit 
details of the procedure used to restore diffuse optical tomograms reconstructed by the PAT 
method. They can be found in (Konovalov et al., 2007).  

32 16

8 4

Figure 18. Results of space-varying restoration of MART-tomograms with 0.8-cm-diam 
inhomogeneities for measurement ratios 32×16, 16×16, 8×16, and 4×16 

Figure 18 shows some results of space-varying restoration of diffusion tomograms 
reconstructed by the MART and presented in Figure 14 and Figure 15. The corresponding 
number of sources used for reconstruction and simulation of individual PSFs is given on the 
left and on the right of Figure 18. For restoration, a tomogram is divided into two 
conditionally spatially invariant regions, each of them containing its own absorbing 
inhomogeneity. To simulate the PSF, we defined a point inhomogeneity in a triangle located 
in the center of the inhomogeneity. It is seen from the Figure that we succeeded to not only 
improve resolution, but also neutralize deformations in the inhomogeneity shape. After 
restoration, the structures are reproduced much better even through the data are ultimately 
incomplete (see right image at the bottom of Figure 18). Blue curves in Figure 17 show MTFs 
constructed from the profiles of restored MART-tomograms. The corresponding estimates of 
spatial resolution provided in Table 1 in brackets demonstrate a significant gain in 
resolution (more than 16% for measurement ratio 32×16) due to space-varying restoration.  
It should be noted that the problem of restoration of spatially variant blur is also needed in 
FVCT. However, to get the effect here, the PSF must be defined for each image cell, as the 
resolution in FVCT is much better than that in DOT (see Table 1). It is extremely difficult to 
do because of enormous requirements for computing and time resources. Search for an 
acceptable solution which will help implement a spatially variant model in FVCT is the 
subject of our short-term interest.  
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4.2 Post-processing based on nonlinear color interpretation  

The effect of gamma-quanta beam hardening (Figure 13) is caused by the polyenergetic 
spectrum of radiation source and dependence of the object function (extinction coefficient) on 
the photon energy. Existing methods for eliminating beam hardening artifacts fall into three 
categories: pre-processing of projection data (Brooks & Chiro, 1976; McDavid et al., 1977), 
iterative post-processing of reconstructed tomogram (Elbakri & Fessler, 2002; Yan et al., 
2000) and dual-energy imaging (Alvarez & Macovski, 1976; Kak & Slanay, 1988; Konovalov 
et al., 1999; 2000). The pre-processing methods are low efficient when high-contract structures 
are reconstructed. The most accurate iterative post-processing methods require, as a rule, 
extensive computation and turn out to be time-consuming. The dual-energy methods 
presuppose data recording for different spectra of radiation source, as well as additional 
calibration procedures to measure the effective photon energy (Konovalov et al., 1999; 2000). 

Figure 19. Results of application of linear (left) and nonlinear (right) palette to the images 
presented in Figure 13(b), (c), and (d) 
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For “flattening” the image intensity in order to compensate the beam hardening effect, we 
use simplified approach based on an application of the color interpretation methods. We 
consider the methods for creation of nonlinear color palettes and nonlinear statistical and 
analytical functions of correspondence between image intensity and color space. Detailed 
description of algorithms is given in (Mogilenskikh, 2000). This chapter is mainly focused on 
illustrative examples of their application.  
The color palette is the ordered set of colors from the color space where each color 
corresponds to its own ordinal number. If the palette is nonlinear, the set of colors form a 
curvilinear trajectory in the color space. For image visualization with the use of the color 
palette we should form the law of correspondence between image intensities and colors in 
the cells (hereafter, correspondence function, CF). The argument value of such function is 
the image intensity, and the function value is the color or the color index in the palette. The 
linear CF is usually applied. Figure 19 shows the result of application of the linear black-
and-white palette and the linear CF (left), as well as nonlinear palette including four basic 
colors (blue, yellow, red, and green) and the linear CF (right) to the tomograms given in 
Figure 13. It is seen that the fracture area is more obviously revealed in the second case. 
However, the linear CF does not always allow data interpretation to be informative enough. 
To enhance the image informativity, we use the nonlinear statistical and analytical CF. The 
algorithm for creating the nonlinear statistical CF can be briefly described by the following 
sequence of steps.  
(a) Form the linear CF and put color )( klfG  in conformity with image intensity klf  in the 

),( lk -cell.

(b) Calculate the number of cells )( kl
cells
G fN corresponding to each color of the palette and 

define the weights according to the formula 

+= cells
kl

cells
G

colklG N
fNNfW 1)(

norm)( , (25) 

where colN  is a number of colors in the palette, cellsN  is a full number of image cells, and 
)(norm ⋅  is normalization operator (17).  

(c) Calculate the statistical CF in the form of a spline. The following 1st degree spline is used 
in our case: 

[ ] [ ] )()()()(norm)()( 1 klGklGklGklcolklkl
stat fWfWfWfNfGfG +−⋅−= + . (26) 

 (d) Form the nonlinear CF through addition of the statistical CF (step(c)) and the linear CF 
(step (a)). 
Left column of images in Figure 20 demonstrates the example of application of such 
nonlinear CF to tomograms given in Figure 13. Thus, it is possible to automatically 
distinguish informative contours of factures and simultaneously preserve intensity shades 
inside the image.  
The essence of analytical CF is in applying the nonlinear color coordinate scales to attain the 
correspondence between the color and the intensity in the cells. Elementary functions and 
their algebraic combinations are used for that. Right column of images in Figure 20 shows 
the result of application of exponential CF )60exp()( ffG =  to images given in Figure 19 
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on the left. The type of the function is selected on the basis of the a priori information on the 
homogeneity of high-density structures of the object, which helps to present the internal 
facture pattern in the palette of two colors: black and white. This allows the informative 
regions of cracks and their boundaries to be strongly distinguished.  

Figure 20. Results of application of statistical (left) and analytical (right) CF to the images 
presented in Figure 13 and 19 (on the left), respectively  
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a b 

c d 

Figure 21. The processed photograph of sphere section (a) and the results of binary 
operations with processed tomograms reconstructed from 24 (b), 12 (c), and 8 (d) views 

To estimate the accuracy of fracture pattern reproduction, we compare the results of 
tomogram post-processing with the etalon image obtained through processing of the photo 
presented in Figure 13(a). For comparison, a variety of methods based on binary operations 
and visualization algorithms (Mogilenskikh & Pavlov, 2002; Mogilenskikh, 2003) can be 
used. In our case, processing of the photo includes the construction of the same-level 
isolines, clearing of half-tones between the isolines, and filling of the isolines-bounded areas 
by black (Figure 21(a)). The processed photo is superimposed onto the processed 
tomograms given in Figure 20 on the right. As a result of binary operations, one obtains 
three-tone images presented in Figure 21(b), (c), and (d), where gray color characterizes the 
difference, and black and white – coincidence. The relations between gray areas and black 
area of the etalon image are equal to 0.03, 0.19, and 0.28, respectively. These quantitative 
estimates and visual analysis of Figure 21 show that the accuracy of reproduction of the fine 
fracture pattern seems to be unsatisfactory for reconstructions by 12 (Figure 21(c)) and 
8 views (Figure 21(d)). This conclusion is in agreement with the results of Table 1, which 
show that the spatial resolution limit is worse than 1.0 mm when the number of views does 
not exceed 12. 
The methods for creating the nonlinear CF are also efficient in the case of the diffusion 
tomagrams post-processing. The space-varying restoration of tomograms obviously 
improves but still reproduces incomplete profile of inhomogeneities. And as it follows from 
Figure 22, nonlinear-CF-based processing of restored tomogram of the scattering object with 
0.8-cm-diam inhomogeneities makes it possible to approach a “flat region” of the true profile. 
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Figure 22. MART-tomogram with 0.8-cm-diam inhomogeneities and its profile after 
restoration (top), application of exponential CF )14exp()( ffG =  (center), and application 
of nonlinear statistical CF 

5. Conclusion 

In this chapter we consider two examples of algebraic reconstruction in incomplete data 
computed tomography: few-view X-ray computed tomography and one-step diffuse optical 
tomography. Multiplicative algebraic reconstruction technique optimizing the entropy 
allows the better quality of tomograms to be obtained. It is shown that, to enhance the 
convergence of iterative reconstruction procedure and to minimize the artifact level on 
tomograms, the conventional formulas of solution correction should be modified. The 
presented results of reconstruction demonstrate the efficiency of the following our 
modifications: 
(a) To calculate the weight matrix, we use not the lines but the narrow strips which provide 
the sufficient filling of the reconstruction area. 
(b) We take into account the non-uniformity of the distributions of the weight sums and the 
solution corrections numbers over the image elements. 
(c) We calculate the correction factors which account for a priori information on whether the 
solution is non-negative and on the presence of structure-free zones in the reconstruction area. 
For increasing the accuracy of spatial structures reproduction under conditions of the strong 
incompleteness of data, it is advisable to post-process the reconstructed tomograms with the 
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use of a priori information about the object. We demonstrate the efficiency of the methods of 
space-varying restoration and post-processing with nonlinear palette and nonlinear function of 
correspondence between the palette color and image intensity in the cells. As a result, we 
obtain the reproduction quality close to that of medical tomograms in the case of few-view 
tomography and close to quality of diffusion tomograms reconstructed by well-designed 
multi-step algorithms in the case of diffuse optical tomography. 
In conclusion it should be noted that, for calculation, we use a rather slow soft-ware 
medium like MATLAB and a Windows XP Intel PC with 1.7-GHz Pentium 4 processor and 
256-MB RAM. Computational time of the reconstruction-restoration procedure for diffuse 
optical tomograms is 1.5…2.5 minutes. These digits are better than those for multi-step 
reconstruction, but they do not satisfy the requirements of real-time medical explorations. In 
the future, it is interesting to optimize the duration of the diffuse optical image production. 
The implementation of a spatially variant blur model in few-view computed tomography is 
also the subject of our short-term interest. 
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1. Introduction 

Autonomous mobile robots are becoming an integral part of flexible manufacturing system 
especially for material transport, cleaning and assembly purpose. The advantage of this type 
of robots is that the existing manufacturing environment need not be altered or modified as 
in case of conventional AGVs where permanent cable layouts or markers are required for 
navigation. These robots are also used extensively for survey, inspection, surveillance, bomb 
and mine disposal, underwater inspection and space robotics.  For autonomous navigation, 
proprioceptive and exteroceptive sensors are mounted on these mobile robots. As 
proprioceptive sensors measure the kinematic states of the robot, they accrue error over time 
and they are supplemented by exteroceptive sensors like ultrasonic and laser range finders, 
camera and global positioning systems that provide knowledge of its local environment 
which the robot subsequently uses to navigate.  Here we describe the vision system of first 
indigenous autonomous mobile robot, AMR, with manipulator for environment perception 
during navigation and for job detection and identification required for material handling in 
a manufacturing environment. 

1.1 Autonomous Mobile Robot System (AMR) 

The ultimate goal for research on autonomous navigation of mobile robot is to endow these 
robots with some practical intelligence so that they can relieve or replace the human 
operators of tedious and repetitive tasks and for this reason manufacturing is one area 
where mobile robots are becoming a necessity. 
Among on-going research on autonomous mobile robots for applications related to 
manufacturing, University of Massachusetts Amherst is developing a mobile robot with a 
comprehensive suite of sensors that includes LRF and vision along with a dexterous 
manipulator, as mobility extends the workspace of the manipulator, posing new challenges 
by permitting the robot to operate in unstructured environments (Katz et al., 2006).  
Bundeswehr University Munich is developing vision-guided intelligent robots for 
automated manufacturing, materials handling and services, where vision guided mobile 
robots ATHENE I and II navigates in structured environments based on the recognition of 
its current situation and a calibration-free manipulator handles various objects using an 
stereo-vision system (Bischoff & Graefe, 1998). 
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In this country, mobile robots are being developed in some research institutes in 
collaboration with academic institutes and private sectors. One such mobile robot is 
SmartNav built by Zenn Systems, Ahmedabad in collaboration with IIT, Kanpur and BARC 
(Sen et al., 2004). Our mobile robot with manipulator, AMR, is especially tailored for 
material handling and transport in a manufacturing environment.  The vehicle navigates 
autonomously and transports jobs and tools from one workstation to another workstation.  
Figure 1 shows the AMR with all the mounted sensors.  Among the sensors, a stereovision 
camera is mounted in front of AMR for environment perception. Another CMOS camera 
mounted on the wrist of the manipulator is used for material detection and identification 
required for pick and place operation.  Laser and sonar range finders are used for 
localization through map building and for obstacle avoidance respectively during 
navigaiton (Datta et al., 2006).  AMR stands on a distributed architecture for performing 
various tasks without any perceptible delay and for safeguarding the total system against 
major failure that may occur when the total burden rests on a single point of operation 
(Datta et al., 2007). 

2. AMR Perception 

2.1 Prior Art  

Color image transmission from the robot while navigating in robot workspace has become 
very important in the field of mobile robotics, not only for localization by feature 
identification but also for monitoring of the robot environment through reconstructed 
images at multiple points in the robot work area. The robot work area can be a huge shop 
floor or a warehouse encompassing an area of about 200meters, for effective control from a 
remote host through a single WLAN Access Point. 

Figure 1. AMR  
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Traditional transfer of bitmap images is quite cumbersome. A large image transferred over 
the Ethernet can take several seconds.  To alleviate this problem, progressive image 
transmission scheme is used where image fidelity, taking advantage of such popular image 
file formats as JPEG (Joint Photographic Experts Group) and GIF (Graphics Interchange 
Format), is gradually built up so that the viewer can see an approximated image in its whole 
without the need to wait for all the data to be received (Tong & Zhang, 1998).  But gradual 
building up of an image in a constantly changing environment becomes a hindrance for 
mobile robot perception, as high-speed image transmission is absolutely necessary while 
navigating, to capture the changing scenario.   
Similarly, several methods exist for reconstruction of transmitted data. Two approaches that 
provide robust image transmission through reconstruction are decoder-based adaptive 
reconstruction and reconstruction-optimized source coding (Hemami, 1995).   
Among decoder-based adaptive reconstruction, Smoothing Criterion Reconstruction (SCR), 
an adaptive algorithm, is designed to exploit the characteristics of the compressed visual 
information, which reconstructs the lost information of the image using image 
characteristics such as spatial and temporal correlation (Hemami & Meng, 1995).  As such, 
SCR generally requires extensive computation power, which thwarts the purpose of online 
viewing of robot environment through fast reconstruction during navigation.  Another 
approach, Vector Quantized Linear Interpolation (VQLI) (Hemami & Gray, 1994) provides 
reconstruction of equivalent visual quality with less than 10% transmission overhead.  
Vector Quantization (VQ) is used at the encoder to set appropriate weights for image 
compression which is decoded for reconstruction.  This approach provides reconstruction 
capabilities without the extensive computational burden as in previous case, but restricts 
coding of the image for transmission to a proprietary format. 
In reconstruction-optimized source coding, a block-based source coding technique Lapped 
Orthogonal Transform (LOT) is designed to maximize the reconstruction performance 
(Hemami, 1996).  Mean-reconstruction, in which a missing coefficient block is replaced with 
the average of its available neighobors, is selected and a reconstruction criterion is defined 
for equal distribution of reconstruction errors across all transform coefficients and a family 
of LOT is then designed to meet the reconstruction.  The overall performance can be gauged 
by considering both the coding gain and the reconstruction gain. Although the 
reconstruction-optimized LOT family provides excellent reconstruction capability, but any 
kind of matrix manipulation required is inconvenient for instant viewing of robot 
environment through fast reconstruction. 

2.2 AMR Image Transmission Network 

Reliable transmission and reception of images is imperative for mobile robot perception.   
Most transmission schemes take advantage of popular JPEG or GIF image format as 
responsiveness gained from rapid image transmission is more important than perfect image 
fidelity.  Robustness is therefore vital for rapid image transmission and reconstruction in a 
mobile robot network. Hence, we also take advantage of the most popular and widely 
supported JPEG image file format  (Wallace, 1991) (Schafer, 2001) for transmitting full color 
images frame by frame from AMR to multiple clients, set at different monitoring points 
within AMR work area in a manufacturing environment and for reconstructing these 
images for viewing almost without any perceptible delay.   
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2.2.1 System Description 
A. Server or host 
The server or the host computer in AMR’s network resides in the mobile robot. For 
experimental purpose, first a mono-vision camera and then a stereo vision camera is used 
for grabbing images of the surrounding which are transferred first over Ethernet and then 
over WLAN, for comparing the transmission characteristics of each medium.  In our case, 
the host computer is a Pentium-4 CPU @ 2.8 GHz with 1 GB RAM loaded with Windows 
2000 OS and VC++ 6.0 with an Ethernet interface as well as a WLAN interface. The mono-
vision camera is a PULNIX-TMC-6DSP with a Matrox Meteor-II/Standard frame grabber 
card. Using image control properties of the frame grabber, a color image with a resolution of 
768x576 is grabbed and stored in JPEG format.  The stereovision camera is a digiclops 
trinocular camera from PointGrey Research with IEEE-1394 interface. For the stereovision 
camera, an image with a resolution of 1024x768 is grabbed in raw format and is converted to 
JPEG format for transmission and display.  
B. Multiple clients 
Client computers are located at different points within the robot work area.  The computers 
are of various configurations. A typical client computer is a Pentium-4 CPU @ 2.8 GHz with 
512 MB RAM loaded with Windows 2000 OS and VC++ 6.0 with Ethernet and WLAN 
interface.  Figure 2 shows AMR architecture. 

Figure 2. AMR architecture 
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2.2.2 Methodology for Image Transmission and Reconstruction 
A. Image Transmission 
High-resolution color images are transmitted over the network using socket communication. 
Multi-threading is used so that the AMR server can cater to multiple clients. Microsoft 
Foundation Class (MFC) CSocket is used, as this class is highly useful for client/server 
model communication. CSocket, derived from the base class CObject, uses serialization 
protocol to pass data to and from a socket object via a CArchive object. An intermediate 
class CSocketFile, also derived from base class CObject, is required, as the CArchive object 
attaches to an object of class CSocketFile for sending or receiving data.  
In our case, for the server side a CServerSocket object, inherited from CSocket, is created.  
One CArchive object is created for sending data and one for receiving data from the clients, 
which is associated with CSocketFile object in the CArchive constructor. The server socket 
is set in listening mode and on accepting a client, it creates a new object of the class 
CListenSocket.   
After an image is grabbed, the image data is assembled which is written to the listening 
socket for sending to the client through CArchive object.  
Similarly, for images grabbed from stereovision camera, the images are converted from 
raster format to JPEG format for ease of transmission using standard technique for image 
compression.  Image data is then serialized using CArchive class and written to CSocket
using CSocketFile for transmission to clients. 
B. Image Reconstruction 
The image data is sent from the host to the clients over WLAN and Ethernet. Data is 
received on the client side through CArchive object, which in turn accesses CClientSocket
inherited from CSocket via CSocketFile.  
Once the client receives the image data, it reconstructs the image using the COM 
(Component Object Model) class, IPicture. IPicture manages a picture object and its 
properties. Picture objects provide a language-neutral abstraction for bitmaps, icons, and 
metafiles. A class CPicture is created which holds an ATL (Active Template Library) smart 
pointer CComQIPtr to the IPicture interface. Class CPicture encapsulates only those 
methods needed for displaying the images. The image data received by the client is loaded 
in the memory as a CMemFile object using CArchive class. CMemFile is the CFile-derived 
class that supports memory files.  
The image is loaded as a stream using COM class IStream, which calls OleLoadPicture to 
load the image in the memory. Finally, Render is called at a specified offset which 
instantiates IPicture method for rendering the image onto specified device context.  The 
block diagram in Figure 3 shows the total image transfer scheme described here. 

3. Object Detection and Identification for Material Handling 

AMR material handling system consists of Intelitek’s 5 DOF Scorbot-ER-4u manipulator 
with a CMOS camera, mounted on the wrist of the manipulator as shown in Figure 4.  Once 
the AMR navigates its way to the target workstation, the manipulator routine is invoked.  
Figure 5 shows the overall AMR software architecture. SBC2, acting as the server, turns on 
the manipulator control box, which in turn activates the manipulator.  As the manipulator 
moves over the worktable, the camera scans the worktable and when it detects a job, using 
template matching identifies the desired job or tool.  Adaptive thresholding is used for 
dynamic image segmentation.  Using the gray level distribution of an image, the 
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neighborhood around the highest peak of the histogram is chosen as the threshold region.  
A novel variation of Otsu’s method (Otsu, 1979) is proposed for faster online processing, 
which chooses the optimal thresholds by maximizing the between-class variance with an 
heuristic search method for adaptive thresholding.  Once the job parameters are calculated, 
the gripper picks the job and puts it on the platform. In this way, the jobs are stacked on the 
vehicle and are transported to the next workstation where they are unloaded using reverse 
operation and AMR continues with its next mission. 

Grab image and 
save in JPEG format

Serialize data using 
CArchive class 

Write to CSocket 
using CSocketFile 

Render image in 
JPEG format 

Load as a stream in the
memory as 

CMemFileObject using 
CArchive class 

Read from CSocket 
using CSocketFile 

Ethernet / 
 WLAN 

COleLoadPicture
IPicture 
method

Image Transmission (Server)

Image Reconstruction (Multiple Clients)

Ethernet / 
 WLAN 

Figure 3. Block diagram of total image transfer scheme 

      
Figure 4. Manipulator setup for material handling using template matching 
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Figure 5. AMR software architecture 

3.1 Correlation based Online Template Matching 

Template matching is a proven process for classifying unknown samples by comparing 
them or matching them to known prototypes or templates.  The matching process involves 
(1) moving the template within a search area, the search area may be a sub-image within a 
larger image or a whole image area (2) at each template location, computing the similarity 
between the template and the image area over which the template is positioned, and (3) 
determining the position where a similarity measure is obtained. 
The measure of match, M(f,g), represents the degree of similarity between two digital 
images, { f } and { g } .  Correlation measure is one of the few methods to gauge the “measure 
of match”. Other methods include inter-pixel distance measure where measures of match 
are based on the pixel-by-pixel intensity differences between two images { f } and { g };
sequential similarity detection algorithms (Barnea and Silverman, 1972), which proposes a 
more efficient alternative to correlation measures for template matching where the measure 
of match is based indirectly on an error measure for corresponding pixels in { f } and { g },
the images under comparison at any stage during registration process; and sign change 
criteria (Venot et al., 1984) for  registration of dissimilar images where if we take the pixels 
in the difference image of two images { f } and { g } which differ only by additive noise with 
zero mean and a symmetry density function, i.e. 

dij =  fij - gij

In row-column order, there will be many sign changes between adjacent dij and images 
which have differences significantly greater than the mean of the noise will not produce 
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many sign changes between adjacent dij, which is the motivation behind the use of sign 
change criteria, a basis for measures of similarity between images.   
But the most prevalent method for measure of similarity is the correlation measure. The 
correlation between the template and the image window has been used as a measure of 
similarity in template matching and image registration since the 1970s (Rosenfeld, 1969).  
For digitized images { f } and { g } of size A, the normalized correlation coefficient (corr)
between  { f } and { g }is defined as 
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where E[x] is the expected value or mean of a data set {x} and sd[x] is the standard deviation 
of {x}.  The correlation coefficient takes a value in the range of –1.0 to +1.0, providing a 
quantitative measure of similarity between two data sets. 
Though the advantages of the correlation coefficient approach are its reliability and accuracy 
however, computing the correlation coefficient is extremely expensive.  The calculation of 
correlation coefficients for every possible search point during template matching is 
extremely time consuming.  Thus a search method with both high speed and accuracy is 
required in making the correlation coefficient method computationally reasonable. 
Among fast template matching techniques, bounded partial correlation (BPC), based on the 
normalized cross-correlation (NCC) is used for finding global distortion minimum or 
correlation maximum (Stefano & Mattoccia, 2003).  It is an extension of successive 
elimination algorithm (SEA) (Li & Salari, 1995) (Wang & Mersereau, 1999) and partial 
distortion elimination (PDE) (Bei and Gray, 1985), which allow for notably speeding up the 
computation required by an exhaustive-search template-matching process.  Since BPC is a 
data dependent optimization technique, the computational benefit depends on the image, 
the template, the position of the template within the image, the correlation threshold, as well 
as on whether or not one deploys information concerning the expected matching position. 
(Yoshimura & Kanade, 1994) suggest using multi-resolution eigenimages for fast template 
matching based on normalized correlation. This method allows to accurately detect both 
location and orientation of the object in a scene at faster rate than applying conventional 
template matching to the rotated object. 
Another existing template matching technique is the use of sum-of-squared-differences 
(SSD) measure to determine the best match.  Unfortunately, this measure is sensitive to 
outliers and  is not robust to variations in the template, such as those that occur at occluding 
boundaries in the image. To compensate for these drawbacks techniques such as subpixel 
localization, uncertainty estimation and optimal feature is used for robust measure (Olson, 
2000).
Another traditional technique for template matching using cross-correlation and an 
exhaustive search is Fast Fourier transform (FFT) operations which can be used to calculate 
the cross-correlation surface (Anuta, 1970).  In order to use an FFT, the image dimensions 
(N) must be powers of 2.   Therefore it is necessary to pad the template with zeroes in order 
to make it the same size as the image. 
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(Vanderbrug & Rosenfeld, 1977)  using sum of the absolute valued differences (SAVD) and 
(Goshtasby et al., 1984) using cross-correlation describe two-stage template matching for 
reducing the computation required of template matching. This two stage template matching 
is refined to coarse-fine template matching (Rosenfeld & Vanderbrug, 1977) where a low -
resolution template is applied in the first stage, followed by the full resolution template 
where the match threshold is exceeded. Another class of fast search algorithms is three-step 
search (Jain, 1981), which is widely used in motion estimation for digital video compression 
and processing. In the first search step, a search step size of 4 pixels is used.  Once an 
optimal point is found, the step size is reduced to 2 pixels to evaluate the neighborhood of 
this previously determined optimal point to choose the next search point.  In the third step, 
all the neighboring points of second search point are evaluated to find the final best-
matched point.  Certainly, this fast search method can speed up the search process, but 
mismatches or suboptimal matches can occur. 

      
Figure 7. Selection of horizontal and vertical search steps 

Figure 8. CAPS search lattice 

In our AMR vision system application for object detection and identification, after the robot 
navigates its way to the target workstation, the CMOS camera, mounted on the wrist of a 5 
DOF articulated manipulator, identifies pre-defined jobs for pick and place operation using 
Correlation-based Adaptive Predictive Search (CAPS) method (Shijun et al., 2003), which is 
based on coarse-fine search method.  Using predetermined characteristics computed from its 
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autocorrelation, CAPS method justifiably selects a set of horizontal and vertical search steps 
rather than consecutive point-to-point search for faster job detection as shown in Figure 7.  
For a particular cut-off coefficient VC from the autocorrelation graph in Figure 7, the 
horizontal and vertical widths, Hs and Vs, are chosen as step sizes for coarse search. Figure 8 
shows the CAPS search lattice with CAPS horizontal and vertical step sizes Hs and Vs. In 
our case, Hs and Vs are determined for VC  = 0.6, which yields satisfactory result. 

Figure 9. Application of CAPS method on  280x352 image 

For our implementation, as the arm moves over the worktable, the camera scans the 
worktable. As it approaches the job, with each scan, using coarse search technique through 
pre-calculated vertical and horizontal steps, the correlation coefficient with respect to the 
stored template is calculated to find out the tentative pose of job and the pose information  is 
then transferred, first with respect to camera and then with respect to manipulator base. 
Next the camera is moved to this position. Figure 9 shows the sequence of identifying a job 
based on CAPS method. Figure 9a, 9b and 9c show the result at the end of each coarse 
search. When the correlation coefficient is greater than matching threshold value TM, based 
on the statistics of the template, through fine search technique actual pose of the job is 
calculated as shown in Figure 9d.  In our case, using environment conditions which includes 
illumination of the work area, the value of TM = 0.8 is found suitable. Figure 9e finally 
identifies the actual location of the image before thresholding for parametric calculation. 
Figure 10 gives the block diagram of the CAPS algorithm for template matching. 

3.2 Image Thresholding for Proper Gripping 

Thresholding is an important and most commonly used technique for image segmentation 
that tries to identify and extract the image of an object from its background on the basis of 



AMR Vision System for Perception, 
Job Detection and Identification in Manufacturing 529

the distribution of grey levels in the captured image.  Thresholding techniques can be 
categorised into two classes: global thresholding and local (adaptive) thresholding.  In 
global thresholding, a single threshold value is used to separate the foreground and the 
background of an image.  It is attractive because it is simple and is sufficient in a fixed, 
structured environment.  However, in case of AMR navigating its way from one 
workstation to another, due to uneven illumination, local thresholding is more appropriate 
for segregating the image from the background for proper gripping of the object through 
parametric calculations using Freeman chain coding (Freeman, 1961). 

Figure 10. Block diagram of CAPS method 

Over the years many image thresholding techniques have been developed and considerable 
research continues nowadays (Sahoo et al., 1988). The reason for this longterm, ongoing 
effort is that none of the methods are capable of optimal performance under all conditions. 
Thresholding selection techniques can be primarily divided into two groups – bilevel and 
multilevel thresholding. In an image, if the object is distinct from the background, then the 
histogram of the grey-level is bimodal. For bilevel thresholding, threshold value is selected 
that coincides with the valley of the grey-level histogram.  Multilevel thresholding is used 
when the histrogram of the greyscale image is multimodal. 
For real time implementation, most thresholding techniques are based on the statistics of the 
one-dimensional (1D) histogram of grey levels. Many 1D thresholding methods have been 
investigated.  Among frequently used optimal thresholding methods is entropic 
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thresholding. (Pun, 1980; Kapur et al., 1985) proposes an approach, which maximizes a
posteriori entropy to measure the homogeneity of threshold classes, (Sahoo et al., 1997) 
proposes a variation to this approach through Renyi entropy.    However, these methods are 
computationally intensive, hence time consuming thus not suitable for real time 
computation.  (Sahoo et al., 1988) in their study on global thresholding concluded that 
Otsu’s method was one of the better threshold selection methods for general real world 
images with regard to uniformity and shape measures.  Otsu’s method chooses the optimal 
thresholds by maximizing the between-class variance with an exhaustive search (Otsu, 
1979).  The drawback of Otsu’s method is as the number of classes of an image increase, 
Otsu’s method exceeds the time limit for multilevel thresholding in real time. To overcome 
this, (Liao et al.,) proposes a modified approach based on heuristic search method for faster 
multi-level thresholding. 
For our AMR, we have selected one dimension bi-level thresholding using a maximum of 
eighteen-step on-line heuristic search on a gray-scale image based on Otsu’s method for 
determining the proper image threshold. 

3.2.1  Eighteen Step Algorithm for on-line thresholding 

Defining Otsu’s method for image thresholding, an image is a 2D grayscale intensity 
function containing N pixels with gray levels from 1 to L. The number of pixels with gray 
level i is denoted fi, giving a probability of gray level i in an image of 

/Nfp ii =  (1) 

In the case of bi-level thresholding of an image, the pixels are divided into two classes, C1 
with gray levels [1, …, t] and C2 with gray levels [t+1, …, L]. Then, the gray level probability 
distributions for the two classes are 
C1: p1/ 1(t), …. pt / 1(t) and C2: pt+1/ 2(t), pt+2/ 2(t),…, pL/ 2(t) where 
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Also, the means for classes C1 and C2 are 
t
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μ = i.p / (t)  (4) 

and
L

2 i 2

i=t+1

μ = i.p / (t)   (5) 

Let μT be the mean intensity for the whole image. It is easy to show that 

1 1 2 2 Tμ . +μ . =μ  (6) 
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1 2+ =1    (7) 

Using discriminant analysis, Otsu defined the between-class variance of the thresholded 
image as

( ) ( )2 22

B 1 1 T 2 2 T= . μ -μ + . μ -μ  (8) 

For bi-level thresholding, Otsu verified that the optimal threshold t* is chosen so that the 
between-class variance B  2 is maximized; that is, 

{ }* 2
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t = Arg Max (t)
≤
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As an alternate formulation to Otsu’s method, using Eqs. (6) and (7), the between-class 
variance in Eq. (8) of the thresholded image can be rewritten as 

2 2 2 2

B 1 1 2 2 T= μ + μ -2μ  (10) 

As the last term of Eq. 10 is independent of the choice of the thresholds, the optimal bi-level 

threshold is chosen by maximizing a modified between-class variance ( 2

B ), defined as  

2 2 2

B 1 1 2 2= μ + μ  (11) 

Hence, Eq. 6 can be written as 
L

T i

i=1

μ = i.p  (12) 

From Eqs. 6 & 7, modified between-class variance ( 2

B ) can be written as 
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Comparing Eq. 13 with Eq. 8, we find that 2

B
value can be directly calculated ignoring the 

Eq.3, Eq.5 & Eq.6. Again, from the Eq. 9., by OTSU method, optimal bi-level threshold is 
chosen by maximizing modified between-class variance ( 2

B
) for the gray level from 1 to L. 

According to the criteria of both Eq. 9 for 2

B
 and Eq. 13 for 2

B
to find the optimal threshold 

by Otsu method, the search range for the maximal 2

B
 and the maximal 2

B
is Lt <≤ *1 .

This exhaustive search involves (L-1) possible combination, computationally intensive for 
on-line processing. Using eighteen-step method, we have reduced the computational time 
by reducing the exhaustive search from (L-1) possible combinations to a maximum of 
eighteen combinations for detecting the proper threshold. The flowchart in Figure 11 
delineates this process.   
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Figure 11. Flowchart of proposed eighteen-step method 
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4. Results and Discussion 

4.1 Analysis of transmission and reconstruction rate for AMR perception 

Experimental data of image transmission rate and reconstruction rate is recorded using the  
100 Mbps Ethernet and 11Mbps WLAN for mono-vision and stereovision cameras.  The data 
is tabulated, analyzed, graphically illustrated and analyzed in this section. 
A. Image transmission and reconstruction using mono-vision camera: 
Using the approach discussed above, several processes are tabulated. First, colour images of 
resolution 768x576 are transmitted frame by frame from a mono-vision camera over 100 
Mbps Ethernet and 11 Mbps WLAN and are reconstructed on the client side.  The grab rate 
is around 13 fps, which is hardware dependent, comprising a mono-vision PULNIX-TMC-
6DSP camera with a Matrox Meteor-II/Standard frame grabber card. Next the image frame 
is serialized and is processed as a CSocket object. The image data is then written to the 
CListenSocket for transmission.  Finally, there is an acknowledgement from the client side 
as per TCP/IP protocol, before the server is ready for sending the next frame. The process 
for image transmission is tabulated in Table 1 below: 

Approximate time in milliseconds 
 Process Ethernet WLAN 

1. Assembling an image frame for transmission 110 110 
2. Acknowledgement from client 50 90-120 
3. Total process time 160 200 - 230

Table 1. Time for transmitting a 768x576 JPEG image frame 

Next, the process on the client side is recorded. For fast, uninterrupted display, the image 
data is reconstructed using COM class, IPicture. The image data received by the client is 
loaded as a stream, using COM class IStream, in the memory as a CMemFile object using 
CArchive class.  The breakup of the total process time for receiving the frame-by-frame 
image data on the client side through Ethernet and over WLAN is given in Table 2. Reading 
serialized data for reconstruction varies inversely with the throughput rate of the medium 
and there is no perceptible difference between transmitting image frames over these two 
media when it comes to viewing the environment through on-line reconstruction of the 
scene.   

             Approximate time in milliseconds 
 Process Ethernet WLAN 

1. Reading serialized image data 280 280-380 
2. Displaying an image frame 50 50 
3. Total process time 330 330-430 

Table 2. Time for displaying a 768x576 JPEG image frame 

The nature of image transmission over Ethernet and WLAN is graphically illustrated in 
Figure 12 and Figure 13. 
As the throughput rate of Ethernet is higher than that of WLAN, barring few aberrations, 
total process time for transmitting an image frame over Ethernet is around 160ms while 
transmitting the same frame over WLAN takes between 200 ms and 230 ms, as given in 
Table 1.  Figure 13 shows that transmission over WLAN is more prone to environmental 
noise, common in a manufacturing environment. Unlike transmission over Ethernet where a 
steady rate is maintained, variable transmission rate over WLAN does not hamper the 
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scene-by-scene update of the environment when it comes to viewing through online 
reconstruction of the scene. 

Figure 12. Time for sending a 768x576 image frame over Ethernet 

Figure 13. Time for sending a 768x576 image frame over WLAN 
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B. Image transmission and reconstruction using stereovision camera: 
Using the same procedure as mentioned in the above section, stereo images of resolution 
1024x768 are converted from raster format i.e. from PPM format to JPEG format.  From 
grabbing the image in PPM format to converting it to JPEG format takes around 1.04 
seconds as shown in Figure 14. Hence, with other parameters remaining the same, as 
described in the above section, total process time for transmitting an image frame over the 
Ethernet is less than 1.2 seconds and it hovers around 1.3 seconds over WLAN. 

4.2 Result of CAPS based template matching 

We have implemented CAPS method for online template matching on a 3.6GHz Pentium IV 
computer running on Microsoft Windows XP platform. For a 76x82 template and the 
280x352 image, locating the template using full search took 55.485 seconds whereas using 
CAPS method with VC =0.6 and TM = 0.8 took few milliseconds for coarse search and little 
more than a second for fine search. Table 3 gives a breakup of search method along with 
search time for the job shown in Figure 9.  

4.3 Result of proposed eighteen-step thresholding 

For evaluating our proposed eighteen-step algorithm for thresholding, we have considered 
four conventional gray images of F16 jet, Baboon, Lena and Peppers of the size 128x128 
pixels as shown in Figure 15.  Otsu’s method, as given in Eq. 8 and Eq. 9, and our proposed 
algorithm stated in Eq. 13 are implemented in MatLab Version 7.0.1 on a 3.60 GHz Pentium 
IV computer with Microsoft Windows XP operating system. 

Figure 14. Time for grabbing and converting a 1024 x 768 raster image to JPEG 
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Coarse Search 
Frame Time (seconds) 
Frame 1 (Fig. 9a)  0.0156  
Frame 2 (Fig. 9b)  0.0156 
Frame 3 (Fig. 9c) 0.125 
Fine Search 
Frame 4 (Fig. 9d) 1.422 

Table 3. Computation time for template matching using CAPS method 

Table 4 gives the comparative result between Otsu’s method and eighteen-step method for 
bi-level thresholding on these four test images. Figure 16 shows the plot of modified 
between class variance 2

B
against corresponding gray level values required for determining 

the proper bi-level threshold.  The peak for each image sets the threshold for that image. 
Finally, Figure 17 shows the thresholded test images. 

Figure 15. Test images 

Computation time (milliseconds) Images
Otsu’s method Eighteen-Step method 

Bi-Level 
Threshold

F16Jet 140 16 155 
Baboon 141 16 130 
Peppers 141 16 121 
Lenna 219 15 118 

Table 4.  Evaluation of Eighteen-Step method on test images for bi-level thresholding 
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Figure 16. Plot of modified between-class variance against the corresponding gray level 
value

Figure 17. Thresholded images 
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7. Conclusion 

Vision is becoming an integral part of robotic systems not only for navigation but also for 
job identification for material handling as camera is the only sensor that imparts a feel of 
spatial sensing through 3-D sensing that is lacking in other sensors like laser or ultrasonic 
range finders. In AMR, vision plays an integral role in all aspects. It plays a pivotal role for 
mobile robot perception of environment while navigating, through rapid transmission of 
images from mobile robot to remote viewers. Moreover, vision also plays a crucial role in 
online job identification for job handling. Though for all these above tasks, the sheer volume 
of information to be processed online becomes a hindrance, as it was in the past, but we 
have shown that by coming up with novel concepts based on existing knowledge and ideas 
and with continuing advancement in computer architecture, especially with powerful 
modern processors available today, we can not only overcome these difficulties but use its 
unique feature to our advantage. 
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1. Introduction 

The robots that are to find their way in our future households and everyday lives 
necessarily have to be mobile and self-dependent. For such autonomous systems it becomes 
more and more important to efficiently process the incoming data and to thereby eradiate 
what we might call "intelligent behaviour".  
While intelligence in terms of plans and goals are abstract metaphors of each robot's 
decision process, the perception of the local environment has to be a central issue. Dealing 
with this demand in the context of intelligent systems shows plainly what sophisticated 
human visual perception is like. The creators and developers of artificial systems therefore 
build up a construction kit with construction blocks that try to represent the reproduction of 
cognitive perception mechanisms by machine algorithms.  
In this chapter, we will show how a construction block for symmetry perception can be 
added to this set. The main issues discuss three layers that describe this block from its origin 
of biological motivation up to its application for intelligent systems: 
1. Symmetry as a Feature: The first layer addresses the basic motivation of symmetry as a 
feature. Therefore, symmetry references to diverse domains are given and new methods  
developed that provide description and application of symmetry as an image feature. These 
include two main symmetry measures that offer a variety of symmetry properties for 
higher-level image processing tasks. 
2. Regional Symmetry Features: The second layer proceeds to application in relation to modern 
regional image features. The three steps of detection, description and robust matching of 
regional symmetry features form the necessary links between the basic motivation and the 
practical application of symmetry. Symmetry features are evaluated and compared to state-
of-the-art features considering their robustness w.r.t. common image transformations. 
3. Integration and Application: A practical example from the area of mobile robot navigation is 
proposed in the third layer to demonstrate the capability of the developed symmetry 
features in applications. For this purpose, the mobile service robot TASeR from the working 
group of Technical Aspects of Multimodal Systems (University of Hamburg, Germany) is 
used. The application provides the links to higher-level construction blocks from the set of 
visual object analysis and robot navigation. 
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The main issue of this chapter will focus on a conclusion of our work on a fundamental 
analysis of symmetry as an image feature, followed by a framework on the development of 
a robust visual symmetry feature detector and on the implementation of symmetry in robot 
applications. We motivate our work in section 2. In section 3, we show our work on finding 
symmetry measures valuable for our goal of robotic applications. Section 4 describes the 
implementation of the developed symmetry measures into a regional feature detector and 
its evaluation. We propose some preliminary work on exemplary integrating those regional 
features into robotic image processing for egomotion classification in section 5, before we 
conclude this chapter in section 6. 

2. Motivation 

Nowadays, robots are not only meant to sort and stack parcels in unenlivened storage 
depots. They are supposed to wash dishes, to lead through museum halls or even to play 
soccer in interaction with humans. For these tasks, a robot must be able to act mobile and 
self-dependent. It must adapt to its changing environment instead of letting humans adapt a 
constant environment for the robot. An inflexible model of the world is useless in a world of 
motion and dynamics. Robots thus have to be equipped with methods that allow them to 
build their own world model to localize within. They should be able to handle in dynamic 
or unknown environments by constructing, adapting and expanding their models of the 
world with a large degree of autonomy. However, the interaction in a world necessarily 
starts with the perception of things or objects inside. In many applications of our field of 
research, the human visual system gives a wide inspiration to the solution of common 
robotic problems and tasks, e.g. distance estimation to objects, object and situation 
recognition and localisation. We can also observe that a robot's sensor configuration is both 
depending on the application and on the financial means of constructors, developers and 
customers. A camera has the advantages of becoming versatile and cheap visual sensor over 
the last years and of being a system that is very close to our own human visual perception. 
In the work presented here, we focus on the camera as the only sensor. 
If we restrict on visual data only, the problem of selecting special visual features comes up, 
as images are high-dimensional and thus complex to process. Additionally, images are 
highly sensitive to unpredictable interferences like rotation, scaling and occlusion of objects, 
illumination influence, perspective warp and viewpoint change. In (Jepson & Richards, 
1993), the meaning of a “good” visual feature that separates the core of information from the 
clutter basically depends on the application itself. Some other definitions suppose that an 
image feature is a 
• local, meaningful, detectable part of an image (Truco & Verri, 1998),  
• a distinguishing primitive characteristic or attribute of an image (Pratt, 2001),  
• or a simple environmental measurement serving as a “cue” for inferring complex world 

properties in structured environments (Taraborelli, 2003). 
Each of the definitions shows that image features are something that really point out the 
compact core of the whole visual data. In our work, we define a good image feature as being 
robust to the above mentioned transformations in dynamic real-world environments. 
Additionally, we focus on natural features that can be found in a lot of “untouched” 
environments, i.e. without artificial landmarks.  
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Though all imaginable visual features are numerous and manifold in type, they can be 
divided into one of three main classes belonging to their focus. Common global features that 
describe general properties of an entire image scene are rather inappropriate for the task of 
visual scene interpretation. While images of single objects can be generalized easily by 
simple global attributes, e.g. size, colour or texture, it is more difficult to find stable and 
repeatable features for conglomerate scenes. However, global features give very compact 
representations of significant image properties.  
Many higher-level tasks like scene exploration or object classification and object tracking in 
complex scenes are therefore grounded on local features. Being related to human visual 
perception, local visual features like edges and corners give clues for efficient scene 
exploration and allow focusing on well-located interest points. The Scale-Invariant Feature 
Transform (Lowe, 2004) and the Harris-Laplacian (Mikolajczyk & Schmid, 2004) are popular 
methods of local feature detection, approaching robustness to rotation and scale. As the 
exploration of invariant features is an active field of research, well-elaborated comparisons 
of various local feature detectors and descriptors concerning a set of common 
transformations have been published (Mikolajczyk & Schmid, 2004; Schmid et al., 2000; 
Mikolajczyk & Schmid, 2005). 
Due to the different characteristics of global and local features, some applications benefit 
from the combination of both approaches into regional features, where a region is defined as 
an arbitrary subset of the image. The extraction of Maximally Stable Extremal Regions 
(Matas et al., 2004) highlights the advantage of region-based detectors that produce both 
sparse and robust features particularly covariant to viewpoint change and affine 
transformations.
If we consider these issues of different natural visual features, we find local features like 
edges or corners, regional features like colour or intensity blobs, or global features like 
colour histograms in the literature. A rather unnoticed type of feature to use in robotic 
applications is symmetry, though symmetry is present everywhere in our everyday's life. 
Many objects of our world show a high degree of some symmetric property and humans are 
usually surrounded with symmetric objects. Plants and animals grow up in a somehow 
symmetric manner. But even in many other domains like mathematics, art, architecture or 
manifacturing, symmetry plays a major role.  
Let some psychological cites from (Locher & Nodine, 1989) describe the high influence  of 
symmetry on human visual perception: 
• Symmetry is a property of a visual stimulus which catches the eye in the earliest stages 

of vision. 
• Most perceptual theories assume that the eye-brain system uses the axis of symmetry as 

an anchoring point for visual exploration and analysis. 
Symmetry comes along with attention and interest, which are supposed to be necessary for a 
useful natural image feature. We claim that therefore symmetry is worth a view on being 
used as a feature in the context of robot vision. In the next section, we will start by asking 
the question on “how can we receive a description of symmetry from the visual data?”. 

3. Symmetry as a Feature 

As mentioned above, symmetry is a fundamental feature that is evaluated throughout 
several domains, e.g. architecture, art and nature (see Figure 1). Many aspects that 
concentrate on nature and mathematics are discussed in the book “Fearful Symmetry: Is 
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God a Geometer?” (Stewart & Golubitsky, 1992). It has been shown in the biological domain 
that some animals prefer mates that outperform by their symmetric appearance (Enquist & 
Arak, 1994; Kirkpatrick & Rosenthal, 1994), or that doves are able to distinguish between 
symmetric and asymmetric patterns (Delius & Nowak, 1982). A very good introduction to 
several types and appearances of general symmetry can be found in the book “Symmetry – 
A Unifying Concept” (Hargittai & Hargittai, 1994). 

3.1 Definition of Symmetry 

Besides this introduction, we also find descriptions of various types of symmetry in that 
work (Hargittai & Hargittai, 1994). Each type of symmetry can be assigned to a 
corresponding action that fulfills the basic property of symmetry: keeping the shape after 
having performed the action. Thus, we can reflect shapes along an axis that are mirror-
symmetric, or rotate shapes that are rotationally symmetric, or even shift shapes that are 
translationally symmetric, without changing their shape. Here, we focus on the first two 
types of symmetries by giving the following definitions: 
• Reflectional symmetry: A shape is symmetric w.r.t. the reflection along an axis. 

Reflecting the shape along this axis does not result in a change of its appearance. Special 
cases of reflectional symmetry are horizontal (reflection along a horizontal axis) and 
vertical mirror-symmetry (reflection along a vertical axis).   

• Rotational symmetry: A shape is symmetric w.r.t the rotation about a point and a 
certain angle α. Rotating the shape at the point about α does not result in a change of its 
appearance. A shape is n-times rotational symmetric with n = 2π /α.

These definitions are leaned against more detailed and more general definitions of two-
dimensional symmetry types by Zabrodsky et al. (Zabrodsky et al., 1995), which are based 
on exact invariance. However, almost no object of our world shows invariant symmetry 
properties from this point of view. For example, faces are highly symmetric, but both halves 
of one face are never exactly the same. Therefore, we differ our above definitions by using 
the term “change of appearance”. A common face is thus reflectional symmetric, as the 
reflection does not change perception or appearance for the viewer. Following this 
definition, we find that or world consists of many symmetric objects. 

3.2 Symmetry in Human Perception 

How the existence of symmetry influences the human visual system and how this is used for 
visual scene exploration, was evaluated in psychophysical experiments (Locher & Nodine, 
1989). As an important result of those experiments it was shown that especially reflectional 
symmetries and their orientations are of significant importance for human vision. Eye-
tracking experiments show that humans quickly detect and take advantage of horizontal 
and vertical symmetries. Figure 1 gives two samples of such visual explorations. While the 
viewer has fully explored the asymmetric shape on the left hand side, the focus clearly 
concentrates on just one half of the symmetric shape on the right. Hereby, we get a clue that 
the human eye is able to detect and use symmetry as a visual anchoring point for visual 
exploration of objects and scenes. Palmer and Hemenway (Palmer & Hemenway, 1978) 
consider the time of detection of arbitrarily skewed symmetric shapes in similar 
experiments. They conclude that vertical reflective symmetry is very often and more quickly 
detected than horizontal reflective symmetries, which is better than arbitrarily skewed 
reflective symmetries.  
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Those two references are exemplary for others that also motivate symmetry as a visual 
feature from the biological and psychophysical point of view (Barlow & Reeves, 1979; 
Csathó et al., 2003; Ferguson, 2000; Tyler, 1994).  

3.3 Symmetry in Computer Vision 

Besides its influence on human visual perception, symmetry has also been investigated in 
computer vision. There are some references that motivate symmetry as a feature in very 
versatile tasks (Ferguson, 2000; Liu, 2000; Reisfeld et al., 1995; Zabrodsky, 1990). Early work 
in the area of symmetry axis extraction for object description, like the Symmetry Axis 
Transform (Blum & Nagel, 1978) and the Smoothed Local Symmetries (SLS) (Brady & 
Asada, 1984), are very related to the Medial Axis Transform (MAT) offering main axes of a 
shape. The idea of using symmetry as a feature has been advanced over the last decades. In 
the following, some recent and related work is referenced. 

Figure 1. Left:  Examples for symmetric structures in architecture, nature and art. Right: 
Visual explorations both on an asymmetric and a symmetric shape. The path of visual focus 
covers the whole shape for the asymmetric shape, but only one half of the symmetric shape 

Sun (Sun, 1995) and Sun & Si (Sun & Si, 1999) present a fast algorithm to detect the 
symmetry axis of a shape by gradient histograms. A similar approach analyzing an energy 
function of the input image is proposed by Scognamillo et al. (Scognamillo et al., 2003). The 
task of these methods is to detect the main symmetry axis of one shape, thus only images 
with a single object on a uniform background are useful. An application to symmetry as a 
feature in an arbitrary scene would therefore need prior segmentation. 
Reisfeld et al. (Reisfeld et al., 1995) define a generalized symmetry transform that uses 
symmetry to extract regions-of-interest in a scene. The two-dimensional operator both 
includes symmetry as also gradient information. Regions that show a high degree of 
symmetry, but low contrast, e.g. walls, are therefore not extracted. Di Gesù and Valenti 
present the Discrete Symmetry Transform (DST) which is speeded up by the selection of 
non-uniform image regions (Di Gesù & Valenti, 1995). The resulting symmetry image is 
used for several tasks of face recognition, image segmentation and object classification as 
also motion analysis (Di Gesù & Valenti, 1996). These approaches suffer from the generality 
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which causes higher effort in calculation time and parametrization. Similar results using 
symmetry as a detector of interest have been shown by analyzing frequency components of 
an image (Kovesi, 1997). 
Chetverikov (Chetverikov, 1999; Chetverikov, 2003) analyzes the surrounding of each image 
point with regard to its anisotropy. Based on this result, a symmetry structure is calculated 
that represents symmetric texture orientation. The extracted feature thereby describes the 
texture and the image, respectively, as a whole. Liu et al. (Liu et al., 2004) describe patterns 
considering their symmetry properties, including translational symmetries. Regions that 
even correspond with regard to their structure of symmetric shape after perspective warp 
are deeply investigated by Tuytelaars et al. (Tuytelaars et al., 2003). However, these afford a 
number of pre-processing steps that influence the run-time of each feature detection. 
Face recognition based on symmetry description is found in a model-based work by 
Zabrodsky et al. (Zabrodsky et al., 1993; Zabrodsky et al., 1995). Another model-based 
approach to segment objects from the visual data by symmetry is proposed by Liu et al. (Liu 
et al., 1998). Johansson et al. (Johansson et al., 2000) detect rotational symmetries by 
particularly defined rotational operators, while Loy and Zelinsky (Loy & Zelinsky, 2003) 
present an efficient and real-time capable feature detector based on radial symmetries. 
We find that all these approaches differ both in the methods applied and the results, though 
all of them handle the problem of detecting symmetries in the visual data. Some describe 
symmetry properties for a pre-segmented object (Chetverikov, 1999; Liu et al., 2004; Sun, 
1995) and are thereby inadequate for the extraction of feature points from cluttered scenes. 
Some include reflective symmetries of arbitrary orientation (Chetverikov, 1999; Di Gesù & 
Valenti, 1995; Di Gesù & Valenti, 1996; Kovesi, 1997; Reisfeld et al., 1995; Sun, 1995; 
Zabrodsky et al., 1995), offer methods to extract rotational symmetries (Johansson et al., 
2000; Loy & Zelinsky, 2003; Zabrodsky et al., 1995) or use pre-processing steps (Liu et al., 
2004; Tuytelaars et al., 2003) and thereby need additional effort in computing time. 
For our scenario, we prefer an approach that extracts symmetric features from the raw 
visual data without such pre-processing steps, similar to the work by Reisfeld et al. (Reisfeld 
et al., 1995) and Di Gesù and Valenti (Di Gesù & Valenti, 1995; Di Gesù & Valenti, 1996). A 
time-line of the mentioned literature is presented in Table 1. 
The diagonal line highlights the trend towards detection of very general, different and 
complex descriptions of symmetry in computer vision. However, a real-time application in 
robotic systems suffers from this evolution, as more complex algorithms need more 
processing time.  
We found that most image processing operators available for our needs of bilateral 
symmetry detection in cluttered scenes have the crucial demerit of being large and complex. 
In our first approach, we therefore proposed a simple, fast and compact operator to extract 
the regions of interest from images (Huebner, 2003). The psychophysically motivated simple 
symmetry operator detects horizontal and vertical reflective symmetries only. Resulting 
symmetry images offer multiple feature extraction methods.  
In particular, binary images derived from symmetry axis detection are interesting for further 
image processing steps. As we show in the next section, the fast operator can be applied to 
arbitrary images without prior adaptation and without thresholds. The only parameters  to 
specify are the size of the operator mask and the resolution of symmetry data. 
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 Blum & Nagel (1978) SAT    b  Object skeleton 
 Brady & Asada (1984) SLS    b  Object skeleton 
 Reisfeld et al. (1995) CF    m × n  Symmetry values 
 Di Gesù et al. (1995) CF    m × n  Symmetry values 
 Sun (1995) CF    1  Main symmetry axis 
 Zabrodsky et al. (1995) MOD   b  Reconstructions 
 Kovesi (1997) FQ    m × n  Symmetry values 
 Liu et al. (1998) MOD    b  Symmetry segments 
 Chetverikov & Jankó (1999) CF    1  Regularity values 
 Cross & Hancock (1999) CF    b  Main symmetry axes 
 Sun & Si (1999) CFQ    b  Symmetry axis points 
 Johansson et al. (2000) CF    m × n  Symmetry values 
 Loy & Zelinsky (2003) CF    m × n  Symmetry values 
 Scognamillo et al. (2003) CFQ    1  Main symmetry axis 
 Tuytelaars et al. (2003) MOD  b  Symmetry groups 
 Liu et al. (2004) MOD  b  Classification 
 Mellor & Brady (2005) CFQ   m × n  Symmetry values 

Table 1. Time-line of selected approaches on symmetry detection. CF = Convolution Filter. 
FQ = Frequency analysis (Fourier / Wavelet Transform). CFQ = Hybrid CF/FQ. MOD = 
model-base 

3.4 A Fast One-Dimensional Symmetry Operator 

The psychological experiments described in section 3.2 show that vertical and horizontal 
reflective symmetries are most important for human vision. Based on these results, only 
these two types were considered for our symmetry approach. This selection proves even 
more effective if we take into account that it is not necessary to perform any interpolation or 
to use trigonometric functions, since digital images consist of horizontal and vertical arrays 
of pixels. Therefore, only pixels in the same image row R = [p0, pw-1] have to be used for the 
detection of vertical symmetry for a given pixel pi ∈ R, where w is is the width of the image. 
The same holds for horizontal symmetry, considering only one column of the image. 
A further requirement of robot vision is the processing of real images. Because of the 
presence of distortion in real images, an operator that detects exact symmetry will fail and 
produce erroneous symmetry images. Therefore, we propose the following qualitative 
symmetry operator based on a normalized mean square error function: 

 S (pi, m) = 1 – (c•m)-1  j=1..m σ(j, m) • g( pi-j , pi+j )2, (1) 

where m>0 is the size of the neighbourhood of pi  along the direction perpendicular to the 
axis of symmetry. The symmetry value of pi shall be detected with respect to this axis. The 
complete number of pixels considered is 2m. c is a normalization constant which depends 
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on the colour space used and on σ(j, m), which is a radial weighting function. The difference 
between two opposing points pi-j, pi+j is determined by a gradient function g(pi-j, pi+j), which 
typically is the Euclidian distance of the corresponding colour vectors. A few example 
results are presented in Figure 2, demonstrating that the choice of m is important for the 
performance of the algorithm. Setting m to a low value works out well for the symmetry 
axes of small objects, while those of bigger objects are enlarged. However, a large value m is 
better in detecting the symmetry axes of bigger objects. Note that the border  regions of the 
images (left and right for vertical symmetry) are influenced strongly by the effect of fading if 
the operator reaches out of the image, but symmetry axis points (maxima of the values) are 
quite stable and independent of m. However, for this operator and for other techniques from 
the literature, a symmetry value for an image point is detected by a static operator covering 
a surrounding region around that point. These operators return relative values, i.e. qualities, 
of symmetry that describe symmetry as low or high inside a pre-determined, fixed region. 
We call these approaches qualitative or strength-based, as a quality of symmetry is their 
output. Results are depending on the operator size chosen and thus not comparable if two 
different sizes have been used for symmetry feature extraction. 

Figure 2. Example image (left). Vertical symmetry image calculated with small operator (m 
= 10; centre) and with large operator (m = 50; right). Brightness corresponds to symmetry. 

3.5 Quantitative Symmetry Extraction using Dynamic Programming 

Having uncovered these disadvantages of qualitative operators, we claim that it is more 
relevant to get quantitative or range-based information about the size of symmetry instead of 
its degree. We have therefore proposed a novel approach to symmetry extraction based on 
Dynamic Programming (Huebner et al., 2005), which we briefly describe in this section.  
To keep the motivation of psychophysical work on symmetry perception (Locher & Nodine, 
1989; Palmer & Hemenway, 1978), we still restrict our symmetry detection to horizontal and 
vertical symmetry detection, i.e. reflection with respect to a horizontal or vertical axis. Using 
this restriction, the problem states to estimate the range around an image point in its row or 
column in which symmetry is still detectable, i.e. the assignment of opposing points is linear 
and not erroneous. 
The assignment of points is therefore seen as an optimization problem to find the best 
correspondence between the two opposing patterns. Dynamic Programming offers the 
global optimum for such problems, including the assumption that the order of pattern 
elements is kept. See the example in Figure 3. 
The example shows two patterns R = R0,...,R4 and L = L0,...,L4 for which the best 
correspondence between their elements shall be found. The solution of this problem is equal 
to finding the best path in a two-dimensional search space spanned by L and R (Ohta & 
Kanade, 1985). Each path ranging from (R0, L0) to (Rrmax, Llmax) inside this search space 
describes a possible mapping of feature points, as long as the order of elements is kept. This 
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property is only ensured by path elements reaching from one cell to the right, the top-right 
or the top neighbouring cell in the search space. The optimal path can then be found by 
Dynamic Programming starting from point (R0, L0), using simple error measures (Žganec et 
al., 1993), as can be seen in Figure 4. 
Note that the structure of the path and the overall costs are dependent on the patterns' 
symmetric correspondence. As the example shows, high symmetry of the patterns results in 
a diagonal path and low costs. In contrast, the comparison of asymmetric shapes will result 
in a non-linear path and high costs. 

Figure 3. Example patterns to calculate range-based symmetry by Dynamic Programming 

C(l,r) = 
   = min( C1(l,r), C2(l,r), C3(l,r) ), 

C1(l,r) = C(l-1, r) + W1T(l,r),  
C2(l,r) = C(l, r-1) + W2T(l,r),  
C3(l,r) = C(l-1, r-1) + W3T(l,r),  

T(l,r) = | Ll – Rr |

(2)

Figure 4. Right: Error measures that are used for Dynamic Programming. Centre: Symmetric 
patterns' search space including costs and corresponding mapping path (Wi = 1). Left: 
Resulting (linear) correspondences 

Practically, it is easier to handle the cost development on the optimal path than to evaluate 
the path structure. Therefore, our final algorithm efficiently searches optimal paths until a 
cell (l, r) exceeds a given threshold T. The hereby acquired indices l and r serve as a measure 
of symmetry. Note that the environment s composed of l and r can be treated intuitively as 
the size of the symmetric region s = l + r around the considered image point. A search space 
calculation of an asymmetric pattern is interrupted by exceeding the error T. In this case, l 
and r are small, as well as the symmetry measure s. On the other hand, a symmetric pattern 
like the one above results in an optimal path that leads along the search space quite 
diagonally with small error, which justifies a high symmetric value s.  
While this just briefly points out the idea of using a Dynamic Programming approach for 
symmetry description, we have worked out and optimized this approach as the Dynamic 
Programming Symmetry (DPS) algorithm in (Huebner et al., 2005). As a main achievement 
of DPS in contrast to qualitative symmetry operators, the disadvantages of a-priori-sized 
operators are avoided. In addition, a range-based, comparable description of symmetry is 
returned instead of a relative measure that describes symmetry as high or low only. 

4. Regional Symmetry Features 

Based on the symmetry components of qualitative and quantitative symmetry, it is an 
important task to make symmetry features comparable, stable and repeatable in different 
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images. Robust detection of features is a crucial task for applications that deal with visual 
information. Image data is high-dimensional, complex and particularly sensitive to a 
multitude of changes which are mostly unpredictable and may greatly influence the image 
representation of one and the same object or scene. Therefore, a good feature detection is 
strongly required in dynamic and unrestricted real world environments. Preferably, this 
detection is invariant to a number of transformations, namely 

• rotation, • scale change,  • image noise, 
• occlusion,  • illumination change and  • image flow. 

A visual feature is referred to as “good” if it separates the core of information from the 
clutter. This basically depends on the application at hand and on the context it is used in 
(Jepson & Richards, 1993). For our research on vision systems for mobile robots, we define a 
good feature to be both independent of the transformations above and distinctively 
repeatable in dynamic environments.  
Most features applied in literature are commonly classified either as being global, local or 
regional. Concerning our definition of a good feature, common global features that describe 
general properties of an entire image scene are rather inappropriate for our task of robot 
scene interpretation. While single objects can be generalized easily by simple global features, 
e.g. size, colour or texture attributes, finding stable and repeatable features is more complex 
for conglomerate scenes. However, such global features give very compact representations 
of significant image properties. Therefore, global features are mainly used in image-based 
applications like image retrieval or image annotation. 
Many higher-level tasks like scene exploration or object classification and object tracking in 
complex scenes are grounded on local features. Being related to human visual perception, 
local visual features give clues for efficient scene exploration. They allow to focus on well-
located interest points. Therefore, a variety of local features have been applied in a range of 
vision tasks, aiming at high robustness and repeatability. The Scale-Invariant Feature 
Transform (SIFT) proposed by Lowe (Lowe, 2004) and the Harris-Laplacian by Mikolajczyk 
and Schmid (Mikolajczyk & Schmid, 2002) are two popular methods of local feature 
detection. While the SIFT uses local extrema of Difference-of-Gaussian (DoG) filters in scale-
space to produce scale-invariant features, the Harris-Laplace operator joins rotational 
invariant Harris features (Harris & Stephens, 1988) and Laplacian scale-space analysis into 
an affine invariant interest point detector. As the exploration of invariant features is an 
active field of research, well elaborated comparisons of various feature detectors and 
descriptors  under a set of common transformations have been published by Schmid et al. 
(Schmid et al., 2000) and Mikolajczyk and Schmid (Mikolajczyk & Schmid, 2004; 
Mikolajczyk & Schmid, 2005). 
Due to the different characteristics of local and global features, it is beneficial for some 
applications to combine both approaches. Lisin et al. (Lisin et al., 2005) show two methods 
where combining local and global features improve the accuracy of a classification task. 
More than another hybrid-like approach has been found in the detection of regional 
features, in which regions are defined as arbitrary subsets of the image. The extraction of 
Maximally Stable Extremal Regions (MSERs) by Matas et al. (Matas et al., 2004) highlights 
the advantage of a region-based approach: it produces both sparse and robust features that 
are particularly covariant to viewpoint change and affine transformations. Mikolajczyk et al. 
compare and evaluate a set of recent affine region detectors in (Mikolajczyk et al., 2005).  
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Regional features combine the merits of focus point localisation from local features with 
image-describing methods of global features. As symmetry is a regional feature, it supports 
the idea of regional features, especially in the context of range-based symmetry description. 
We reference and compare the regional symmetry features to known state-of-the-art affine 
region detectors. Therefore, we refer to Harris-affine regions, Hessian-affine regions,  
intensity-based regions (IBR), entropy-based regions and Maximally Stable Extremal 
Regions (MSER) that are summarized in (Mikolajczyk & Schmid, 2005). According to those 
recent state-of-the-art detectors, the symmetry descriptions at hand shall be included in a 
robust and stable regional feature detector in this section.  
A time-line overview on selected work on local, regional and global features, as also on 
feature evaluation, is presented in Table 2:  
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Notes

 Harris & Stephens      Rotational invariance 
 Shi & Tomasi (1994)      KLT feature tracking 
 Schmid et al. (1998)    Evaluation of local detectors 

 (Harris, Improved Harris,
 Heitger, Horaud, Cottier,Förster) 

 Milanese et al. (1999)      Fourier-Mellin Transform 
 Lowe (1999)      SIFT (DoG) detector 
 Tuytelaars & van Gool (1999)      Edge-based regions (EBR) 
 Dufournaud et al. (2003)      Scale invariance 
 Tuytelaars & van Gool (2000)      Intensity-based regions (IBR) 
 Mikolajczyk & Schmid (2002)    Harris-affine detector 

 (Harris-affine, Harris-Laplace, 
 Harris-affine regions) 

 Lowe (2004)      Optimized SIFT detector 
 Matas et al. (2004)      MSER detector 
 Kadir et al. (2004)     Salient-region detector 
 Mikolajczyk & Schmid (2004)    Evaluation of local detectors  

 (Harris, Harris-Laplace, Harris- 
 affine, Harris-affine region, SIFT, 
 Laplace, Hessian, Gradient) 

 Yavlinsky et al. (2005)      Global feature densities 
 Lisin et al. (2005)     Combination of global & local 
 Mikolajczyk & Schmid (2005)    Evaluation of local descriptors 

 (Div., GLOH, SIFT, PCA-SIFT) 
 Mikolajczyk et al. (2005)     Evaluation of regional detectors 

 (Harris-affine, Hessian-affine,  
 EBR, IBR, Salient regions, MSER) 

Table 2. Selected approaches on image feature detection, description and evaluation 
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4.1 Symmetry Feature Description 

To extract symmetry features from an image, we first use a small qualitative 1-dimensional 
operator from section 3.4 to acquire fast symmetry information for each image point. 
Horizontal and vertical symmetry axis points are detected by a line-independent maxima 
investigation on the symmetry data. As the pixel-based conjunction of the two resulting 
binary images can effect loss of feature points in cases where skewed symmetry axes indeed 
intersect, but do not share a pixel in the horizontal and the vertical binary image, we 
integrate axis points into straight line segments. Additionally, the segment representation 
includes useful information about each axis, e.g. length, orientation and variance. Segments 
with a large maximum variance correspond to curve segments. We iteratively split these at 
the point of maximum variance until they form straight sub-segments. The feature points 
are now extracted as intersections of vertical and horizontal symmetry segments. 
Calculating range-based DPS symmetry measures sv/h at each intersection of a horizontal 
and a vertical segment reveals an elliptical region feature fi = (yi, i, ai, bi) parametrized by 

     yi = ( x(yi), y(yi) )         (center point)    
     i = ( v + h ) / 2 - π/ 4,   (orientation) 
      ai = s'v(yi),    (1st semi axis) 
     bi = s'h(yi),    (2nd semi axis) 

(3)

where v and h correspond to the orientations of intersecting segments. See Figure 5 for an 
exemplifying illustration of the main processing steps. Caused by line segmentation, 
intersections might miss the ideal symmetry maxima point, thus s'v(yi) and s'h(yi) are 
computed by finding the maximum vertical sv(x) and horizontal sh(x) in a small 
neighbourhood of yi. As a representation similar to the quadratic equation of central conics, 
each feature ellipse can also be formulated as 

Fi = { (x,y) ∈ R2 | AiDi (x-x(yi))2 + 2 BiDi (x-x(yi))(y-y(yi)) + CiDi (y-y(yi))2 = 1 }  (4) 

where Ai = ai2 sin2 ( i) + bi2 cos2 ( i),
 Bi = (ai2 -bi2 ) cos( i) sin( i),
 Ci = ai2 cos2 ( i) + bi2 sin2 ( i)

Di = (aibi)-2

Figure 5. From the left: Vertical and horizontal qualitative symmetry axis points, symmetry 
segment selection and final regional symmetric features built with range-based symmetry 

4.2 Symmetry 

For a part of our experiments, we use SIFT descriptor and matching (Lowe, 2004). As 
another model, we introduced a distribution-based colour descriptor as a very simple form 
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of feature description, as uncertainty of the detector in orientation can better be addressed 
by the generalization ability of a colour histogram. We adopt the representation of a mean-
shift target candidate for robust real-time model tracking from (Comaniciu et al., 2000). The 
mean-shift model is robust to partial occlusions, clutter, rotation in depth and changes in 
camera position. The model is weighted according to the shape of the feature ellipse. Let the 
discrete density p'(fi) = { p'u(fi) }u=1..m of a target candidate frame Gi describe the m-bin 
colour histogram descriptor of a feature fi. Adopted from (21) in (Comaniciu et al., 2000), 
this is 

 p'u(fi) = ci • x∈Gi  Ki(yi, x) δuv(x) , (5) 

with the kernel function Ki(yi,x) describing a weighting over locations x with regard to the 
kernel centre yi. The Kronecker-δ-function compares the bins u and v(x) for equality, where 
v(x)∈{1..m} maps the colour feature of location x to its corresponding histogram bin. Finally, 
ci is a normalization constant ensuring that all p'u(fi) sum up to 1. We now derive an 
elliptical target frame Gi and a Gaussian kernel function Ki for each detected image feature 
yi directly from its elliptic feature representation (4). The frame Gi enclosing each x in Fi can 
easily be defined by widening the representation to 

 Gi = { x | AiDi (x(x)-x(yi))2 + 2 BiDi (x(x)-x(yi))•(y(x)-y(yi)) + CiDi (y(x)-y(yi))2 ≤ 1 }. (6) 

Introducing the 2-dimensional Gaussian kernel function Ki(yi, x), the correlation matrix Mi

that fits the elliptical feature shape in orientation and ratio of the semi axes is given by 

Mi = l2 / 2 q Ci -Bi
-Bi Ai r,

(7)

where l can be used for scaling both standard deviations of the Gaussian function. Figure 6 
shows two kernel shapes of l = 0.5 and l = 1.0  for an exemplary feature yi.

Figure 6. Gaussian distributed kernel functions for an exemplary elliptical region feature  yi

with l = 1.0 (left) and l = 0.5 (right) 

4.3 Symmetry Feature Matching for Mean-Shift Description 

After the detection and colour histogram description of symmetry-based regions, a measure 
of correspondence has to be defined to map most correlated features. Each feature is mainly 
characterized by its descriptor vector, we therefore use the Bhattacharyya coefficient 

 ρρ(fi, gi) = u=1..m ( p'u(fi)•p'u(gj) )1/2 (8)
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to compute the similarity of two features fi and gj. The common application of feature 
matching is given by comparing a feature fi from one scene with a set of features g =
{gk}k=1..n deriving from a second scene. The best match for fi is thus given by 

 fi → gi:    gi = argmax { gk ∈ g } ρ(fi, gk). (9) 

Feature matching experiments usually describe correspondences between two feature sets f
and g. Depending on the final application, different matching strategies may be reasonable, 
namely non-injective and injective matching. Non-injective matching allows several fi to be 
assigned to one gj. This mapping is adequate for applications like classification of multiple 
features into a number of classes. In applications, where features are meant to be non-
ambiguous, one feature from one set should maximally be assigned to one feature of the 
other set. These assignments describe the symmetric subset of injective feature matches 
between f and g. We found that the Mean-Shift descriptor is better for classification tasks 
between features, while the SIFT descriptor is better for distinctive matches. 

4.4 Panoramic Evaluation on Single Images 

In this section, we follow the experiments of affine region detectors in (Mikolajczyk et al., 
2005) by evaluating the proposed symmetry feature detector in relation to other well-
elaborated feature detectors. We compare symmetry features of a set of panoramic images to 
Harris-Affine and Hessian-Affine Regions (Mikolajczyk & Schmid, 2005), Intensity-Based 
Regions (IBRs) (Tuytelaars & van Gool, 2000) and Maximally Stable Extremal Regions 
(MSERs) (Matas et al., 2004). While Hessian-Affine and Harris-Affine offer edge-based 
regions, IBRs, MSERs and the Symmetry approach are oriented towards area-based regions.  
We compute these regional feature types for the 1440 × 288 panoramic image in Figure 7 
(right). Results are depicted in Figure 8. The histogram in Figure 9 shows a very common 
distribution of image feature sizes, where the size of an elliptical region is computed as the 
mean value of its semi axes. Symmetry, MSER and IBR provide few and sparse features with 
mean feature size, while Harris-Affine and Hessian-Affine detect many small features. For 
our symmetry detector, the feature count and the run-time do not depend on image size 
only, but also on symmetric image structure. The main effort is spent on the quantitative 
symmetry detection, where a growing search space for each image point has to be 
established. We can conclude that symmetry offers the most sparse set of features with large 
mean feature size. Additionally, the whole process of feature description and matching is 
depending on feature count, so symmetry features can be described and matched fastest. 
Related approaches emphasize to be covariant under affine transformations like change of 
scale, rotation and perspective view. Covariance terms that elliptical representations of a 
feature cover the same region in different images. Range-based symmetry intuitively 
illustrates the concept of scale robustness, as symmetry is highly proportional to scale. 
However, as we have only used horizontal and vertical symmetry,  the detection of features 
is not rotational invariant. Symmetry axes of horizontal and vertical operators are able to 
approximate slightly skewed axes of symmetry, but are rotational invariant for rotations of 
nπ/2 only. We found that this causes symmetry to be comparatively weak in covariance on 
affine transformations compared to other approaches (Huebner et al., 2006). Nevertheless, 
no multiple scale analysis or scale selection is needed, since scale emerges from symmetry.  
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Figure 7. The first and the last image of a panoramic sequence of 37 images (1440 × 288) 

(a)

(b)

(c)

(d)

(e)

Figure 8. Regional features of the image from Figure 7 (right). (a) Harris-Affine. (b) Hessian-
Affine.  (c) Intensity-Based. (d) Maximally Stable Extremal Regions. (e) Symmetry Features 
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Figure 9. Histogram of feature sizes for the five regional feature detectors 
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4.5 Panoramic Evaluation on a Sequence of Images 

In contrast to the transformations (changes in image blur, scale, rotation, perspective view 
and JPEG compression) discussed in (Mikolajczyk et al., 2005), panoramic warp is not an 
affine one. Therefore, we exploit the properties of the detectors in an evaluation experiment 
on panoramic warp, which naturally includes changes in blur, scale, and panoramic view, as 
can be seen in the panoramic samples above. We use a sequence of 37 panoramic images 
that was recorded during a straight movement using a mobile robot platform (see Figure 7).  
For each of the five detectors, f1 is computed, being the reference feature set of the first 
image. We also detect and describe the feature sets { gi }i=2..37 with the SIFT descriptor to 
compute distinctive matches between f1 and each gi. Hereby, we evaluate how sensitive the 
different detectors are with regard to different levels of panoramic image warp. The number 
of features and feature matches are shown in Figure 10(a) and 10(b). We find again that 
symmetry yields very few features and matches. To rate these matches, the repeatabilities 
r(f1, gi) are computed and plotted in Figure 10(c). The plot presents clearly the repeatability 
decrease with increasing distance for all approaches, as images differ more from the 
reference image along the sequence. Additionally, it shows that the matching rates of 
MSERs and Symmetry are best to find correspondences from the detected features.  
However, detected matches are not always correct. There may be false positives, when 
image regions look the same. To distinguish between false and correct matches, information 
about the exact image transformation is necessary. In (Mikolajczyk et al., 2005), simple 3 × 3 
homography matrices are used to define the ground truth of where a feature has to be after 
an affine transformation. On the one hand, panoramic image flow for robot applications is 
not an affine transformation. There are image regions that do not change (e.g. fixed robot 
parts in the image, regions along the axis of movement and regions that are far away) or 
others that warp in a non-linear manner according to their size and their distance to the 
robot. On the other hand, the environment around the robot is unknown and dynamically 
changing, which makes panoramic homographies for robot applications impossible to 
establish. Therefore, we try to approximate each homography H(1,i) between image 1 and 
image i by a column-based histogram of feature shifts. For each match that results from the 
feature matchings between f1 and gi, we assign its radial shift in x-direction to the column. If 
there are more shifts assigned to one column, the mean value is assigned. Note that the 
results of all feature detectors are used to establish these homographies. Empty histogram 
cells are subsequently filled in by interpolation. To handle outliers, each fifth entry of the 
histogram is used as a sampling point for a cubic spline that now describes H(1,i). Some 
resulting homographies {H(1,i)}i=2..6 are presented in Figure 10(d). The graphs show 
increasing shift altitude and zero-crossings at the image edges 0 and 2π, respectively, as also 
at the image centre π. This gives obvious reason that the robot has moved away from a point 
in the image centre. This is correct, as the robot moved a straight path between image 1 to 
image 37 (see Figure 7).  
After these two steps, we can compare the shifts of the feature matches to the corresponding 
homography for each image match. Figure 10(e) presents the comparison between the 
matches of the different detectors and H(1,3). For the cause that homographies are acquired 
by the complete feature set, they are visibly influenced by these, but outliers are clearly 
recognizable. The largest outlier in the example in Figure 10(e) can be detected at the left 
side of the image as a sample of the IBR method. Reviewing the image sequence, we find 
that this feature is one of those describing one of the monitor screens. It has been matched to 
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one of the other screens in the image and truly is incorrect. In this homography H(1,3) there 
are few eye-catching outliers for IBR, Harris-Affine, MSER, Symmetry and Hessian-Affine. 

a) Number of features |gi| along the 
sequence 

b) Number of matches along the sequence 

c) Repeatability r(f1 , gi) along the sequence d) Homographies between image 1 and 2-6 

e) Homography errors between images 1 
and 3 

f) Mean homography error H(1,i) along the 
sequence. 

Figure 10. For the comparison of all detectors, features of image 1 are matched to those of 
images 2-37 of the sequence 
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The mean deviation of matches about the homographies along the whole sequence is 
depicted in 10(f). It can be seen that matching correctness decreases for each method the 
more the image i differs from the reference image 1, but IBR and Symmetry provide best 
matching correctness for the analysed image sequence. 
Concluding, the experiments show that regional symmetry features are successfully 
applicable for feature detection and matching during panoramic warp. No multiple scale 
analysis or scale selection is needed, as scale emerges directly from the range-based 
symmetry component of the detector. The detector offers comparatively few and significant 
features that support fast description and matching. Matched features are highly stable, 
distinctive and correct in combination with the SIFT descriptor. Another advantage of the 
symmetry approach is the strong relationship of extracted features to objects in the scene. 
Walls, doors, monitors and cabinets are frequently included by one feature. 

5. Integration and Application 

As we are now able to describe symmetry and apply these descriptions in terms of a 
regional feature descriptor, we exemplary integrate our method to a robot application based 
on panoramic vision. In the following application on egomotion classification, we use the 
Hamburg mobile service robot TASeR (see Figure 13). For further applications based on the 
symmetry feature approach, we reference to some of our other work on motion detection 
(Huebner et al., 2005) or object classification (Huebner & Zhang, 2006). 

5.1 Egomotion Classification Algorithm 

The homographies discussed in the previous section showed that repeatability values 
strongly decreases yet after few images. Figure 10(c) depicts that repeatability is less than 
20% after 15 images (150cm). Thus, a precise and general estimation of depth information is 
hardly realizable. Another problem is that a feature offset of 0 degree between two images 
can have multiple causes.  Either the featured object lies along the direction of movement, or 
it is too far so the offset is smaller than a pixel, or it belongs to the robot itself. Because of 
these difficulties, we do not focus on distance or egomotion estimation. However, the optical 
flow of feature matchings between images allows reasoning about the robot's movement. By 
the feature matching technique, extracts of the image flow are detectable in terms of the yet 
discussed partial homographies. Our goal here is to distinguish between four basic robot 
movements: no move, move in direction α, turn left and turn right. Figure 11 shows the 
theoretical image flow and homography graph classes  for these movements. The amplitude 
of a graph is not only dependent on the distance between the two robot positions, but also 
on the distance to the features, thus we only check for each x the sum of signs of the feature 
shifts Δx on the image halfs that are defined by x: 

 d1 (x) = i=0..w/2  δ(x+i) , d2 (x) = i=w/2..w δ(x+i) (10) 

with ( δ(j) =  1, if Δx(j) > ε),   ( δ(j) = -1, if Δx(j) < -ε ),   ( δ(j) =  0, otherwise ). 
The difference d(x) between d1(x) and d2(x) is maximal for the x in moving direction, if d(x) 
is larger than a small threshold t1, so that movement direction α can be calculated as 

 α = argmax{x} d(x)  with d(x) = ( d1(x) – d2(x) ). (11) 
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Figure 11. The four basic movements “Move α”, “Turn right”, “Turn left”, and “No move”.  
Typical feature shifts for those movements are shown in the centre column. On the right 
column, the corresponding homography sectors are depicted, e.g. a “Turn right” action is to 
result in feature shifts in negative x-direction only  

Additionally, the product d1(x)•d2(x) is useful, as it may distinguish a sinus-shaped 
homography graph from a constant one. Therefore, we establish two measures c1 and c2 as 

 c1 = (d1(x)•d2(x)) / w, c2 = -c1,  if d1(x) < 0,   or  c2 = c1, otherwise. (12) 

For  c1<0, we can assume a movement of the robot in direction α. For c1>0, a turn action or 
no movement is probable. To distinguish between these two, we use a second threshold t2. c2

finally helps distinguishing between “Turn left” and “Turn right” actions. 

Figure 12. Top: Between images 122 and 123. The algorithm computes d(α)=-215, 
c1(α)=c2(α)= 0 and correctly returns “No move”. Bottom: Between images 24 and 25. The 
algorithm computes d(α)=-428, c1(α)=-95, c2(α)=95 and returns “Move in direction 340°” 
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The resulting algorithm is applied to a sequence of 200 images that were recorded by the 
TASeR robot. The odometry sensors allow for a final comparison of the real movements to 
the estimated ones. For each neighbouring image pair, symmetric regional features are 
computed and described by the SIFT descriptor for distinctive matching. The symmetry 
homography is computed like described in section 4.5 and classified by the algorithm. 
From this sequence, we show two examples for “No move” and “Move left” in Figure 12. As 
can be seen from the matching, the homography graphs and the measures d, c1 and c2, the 
algorithm also offers robust results for homography graphs that are influenced by failure 
matches. The same robustness is also shown by the results on the whole image sequence, as 
presented in Figure 13. Comparing the real robot route with the estimation, we find a very 
high correctness of movement classification. Although correctly classified, there is uncer-
tainty in the estimation of the movement direction samples α, which ideally should all be 0. 

Figure 13. Left: The TASeR robot. Right: The experimental route map delivered from the 
odometry (top) and the movement classification with our simple algorithm (bottom). 

6. Conclusion 

In this work, bilateral symmetry has been proposed as a concept for the extraction of 
features from the visual data and their application to robot navigation tasks. Symmetry in 
shape and vision is strongly motivated by biological and psychophysical aspects. It is a 
natural feature that can be found in many scenes, whether they show structured indoor or 
unstructured outdoor environments. We conclude with a review on the three main topics: 
1. Symmetry as a Feature: Symmetry has been investigated in several domains like biology, 
psychophysics, architecture and art. Accordingly, symmetry has also been applied as a 
valuable attentional feature for the extraction of regions of interest or for object description 
by symmetric properties in computer vision.  
Motivated by psychophysical experiments on symmetry perception, a fast and compact one-
dimensional operator was supposed earlier (Huebner, 2003) to handle horizontal and 
vertical bilateral symmetry measures only. The operator overcomes the problem of 
symmetry detection methods in literature that use large operators which are mostly 
unsuitable for robotic real-time tasks. However, each of these strength-based operators 
returns a relative, commonly normalized value of symmetry for each image element. For 
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this purpose, a novel method to generate robust range-based symmetry values was 
proposed that produces symmetry range information for each image point (Huebner et al., 
2005). This approach is based on an algorithm computing bilateral quantitative symmetry 
information using an adopted Dynamic Programming technique. Qualitative and 
quantitative symmetry measures offer a variety of symmetry representations - especially 
those of symmetry axes - for higher-level image processing tasks.  
It was shown how globally and versatile symmetry can be used as a feature. Even beyond 
the context of image processing and visual data, symmetry can be used as a general feature 
of structure. A further task in this topic would be the further workout of the quantitative 
symmetry approach. The calculation of the Dynamic Programming Symmetry search spaces 
might be optimized and thereby accelerate computing time. Another open issue is the use of 
search space path structure for quantitative symmetry computation. 
2. Regional Symmetry Features: In this part, a new regional symmetry feature matching 
approach was proposed. It comprises several modular techniques for detection, description 
and matching of image features based on the symmetry types developed in the previous 
section. While the qualitative symmetry operator describes symmetry as a relative degree 
and the quantitative operator describes symmetry as a range, advantages of both were 
combined in a stable regional feature detector. In combination with descriptors, symmetry 
features can robustly be matched. The descriptors used were the famous gradient-based 
SIFT and a Mean-Shift approach that was adopted to the task of feature description. The 
evaluation including state-of-the-art regional feature detectors shows that the symmetry 
feature approach is well applicable for robust feature recognition, especially for panoramic 
image warp. Description and matching of symmetry features is very robust and faster than 
other approaches that derive larger feature sets. Additionally, symmetry features are 
strongly related to objects in the scene. Walls, doors, monitors and cabinets are frequently 
included by one feature. 
Besides the advantages of regional symmetry features, their sensibility to rotation is due to 
this works concentration on horizontal and vertical symmetry measures mainly. This 
invariance would be an important step to support the task-spanning robustness of the 
approach. The measures of covariance and overlap might benefit from an additional 
rotation invariance of the proposed features. Therefore, a further task is to efficiently find a 
robust orientation measure of symmetry and symmetric features. Along and perpendicular 
to this orientation, the proposed twofold quantitative symmetry measures could be used. 
3. Integration and Application: The third topic addressed the applicability of the developed 
symmetry features for robot navigation by panoramic vision. For this purpose, the mobile 
service robot TASeR from the Working Group Technical Aspects of Multimodal Systems at 
the University of Hamburg was used. The capability of symmetry feature matching with 
regard to simple classification of robot egomotion was presented. The integration of the 
developed visual symmetry features into high-level object recognition and robot navigation 
tasks in dynamic environments is thereby motivated. 
It is important to state that the step from one or more features to an object has not been 
made in this work. Features are natural low-level points or regions of attention that are 
supposed to describe significant visual information and thus might be interesting to be 
analysed. Objects are understood as higher-level entities filled with semantic descriptions. 
Those are embedded in higher-level applications like object recognition or autonomous 
robot navigation of intelligent systems. These tasks are theirselves wide areas of research 
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such as the detection of robust and natural image features that has been treated in our work. 
As presented in this work, symmetry can support these tasks. 
Returning to the image of a construction set that has been used in the introduction, 
symmetry is just one of the construction blocks that might help intelligent systems to 
perceive and act in dynamic environments. 
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1. Introduction 

1Simultaneous Localization and Mapping (SLAM) has been one of the active research areas 
in robotic research community for the past few years. When a robot is placed in an unknown 
environment a SLAM solution attempts to build a perfect map of the environment while 
localising the robot with respect to this map simultaneously. Traditionally SLAM utilised 
endogenous sensor data in the process. Successful SLAM implementations using laser 
(Guivant and Nebot, 2002), sonar and radar (Clark and Dissanayake, 1999) can be found in 
the literature, which prove the possibility of using SLAM for extended periods of time in 
indoor and outdoor environments with well bounded results.  
Recent extensions to the general SLAM problem has looked in to the possibility of using 3-
dimensional features and the use of alternative sensors to traditionally used lasers and 
radars. Cameras are competitive alternatives owing to the low cost and rich information 
content they provide. Despite the recent developments in camera sensors and computing, 
there are still formidable challenges to be resolved before successful vision based SLAM 
implementations are realised in realistic scenarios. Monocular camera based SLAM is 
widely researched (Davison et al., 2004; Kwok et al., 2005), however, binocular camera based 
SLAM is mostly overlooked. Some of the noted stereo implementations can be found in 
(Davison and Murray, 2002) and recently in (Jung, 2004). Lack of enthusiasm for research in 
this direction could possibly be attributed to the misconception that range and bearing 
information provided by the stereo vision system is directly utilizable providing a simplistic 
solution to SLAM which is academically less appealing or the apparent success in single 
camera SLAM implementations.  
However, after rigorous analysis and sensor modelling, we found that the standard 
extended Kalman filter (EKF) based SLAM with small base line stereo vision systems can 
easily become inconsistent (Herath et al., 2006a) . 
This chapter attempts to provide readers with an understanding of the SLAM problem and 
its solutions in the context of stereo vision. The chapter introduces the Extended Kalman 
Filter as applied to the generic SLAM Problem. Then, while identifying the prevailing issues 
inherent in solutions to the SLAM problem in stereo vision context, our solutions are 
presented with simulated and experimental evaluations. Several components of the stereo 
                                                                
1 This work is supported by the ARC Centre of Excellence program, funded by the Australian Research 
Council (ARC) and the New South Wales State Government.
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vision system, including outlier rejection, sensor modelling, inconsistency analysis and 
alternate formulations of SLAM are discussed.  

2. Simultaneous Localisation and Mapping (SLAM) 

This section presents an introduction to the Kalman filter in the context of Simultaneous 
Localization and Mapping beginning with the derivation of the standard Kalman filter 
equations for a linear discrete system and then extending them to accommodate real world 
non linear systems, the Extended Kalman Filter (EKF) as implemented in majority of the 
SLAM solutions. 

2.1 Linear Discrete-Time Kalman Filter 

In order to derive the Kalman filter for discrete linear system, its process and observation 
models must be defined. The Kalman Filter consists of three recursive stages. (1) Prediction, 
(2) observation and, (3) update Stage. For a linear, discrete-time system the state transition 
equation (process model) can be written as follows 

( )  ( ) ( -1)  ( ) ( )  ( ) ( )k k k k k k k= + +x F x B u G v  (1) 

Where x(k) - state at time k, u(k) - control input vector at time k, v(k) - additive process noise, 
B(k) - control input transition matrix, G(k) - noise transition matrix and F(k) - state transition 
matrix. The linear observation equation can be written as  

( )  ( ) ( )  ( )k k k k= +z H x w  (2) 

where z(k) - observation made at time k, x(k) - state at time k, H(k) - observation model and 
w(k) - additive observation noise. Process and observation noise are assumed to be zero-
mean and independent. Thus 

[ ( )]= [ ( )] 0,E v k E w k k= ∀  and [ ] 0, ,T
i jE v w i j= ∀

Motion noise and the observation noise will have the following corresponding covariance; 
T[ ] , [ ]T

i j ij i i j ij iE v v E w wδ δ= =Q R

The estimate of the state at a time k given all information up to time k is written as ˆ ( / )k kx

and the estimate of the state at a time k given information up to time k-1 is written as 
ˆ ( / 1)k k −x and is called the prediction. Thus given the estimate at (k-1) time step the 

prediction equation for the state at kth time step can be written as 

ˆ ˆ( / 1) ( ) ( 1/ 1) ( ) ( )k k k k k k k− = − − +x F x B u  (3) 

And the corresponding covariance prediction; 

( / 1)  ( ) ( 1/ 1) ( ) ( ) ( ) ( )T Tk k k k k k k k k− = − − +P F P F G Q G  (4) 
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Then the unbiased (the conditional expected error between estimate and true state is zero) 
linear estimate is 

ˆ ˆ ˆ( / ) ( / 1) ( )[ ( ) ( ) ( / 1)]k k k k k k k k k= − − − −x x W z H x  (5) 

Where W(k) is the Kalman Gain at time step k. This is calculated as: 

1( ) ( / 1) ( ) ( )Tk k k k k−= −W P H S  (6) 

Where S(k)  is called the innovation variance at time step k and given by: 

( )  ( ) ( / 1) ( ) ( )Tk k k k k k= − +S H P H R  (7) 

and the covariance estimate is 

( / ) ( ( ) ( ) ( / 1)( ( ) ( )) ( ) ( ) ( )T Tk k k k k k k k k k k= − − − +P I W H P I W H W R W  (8) 

Essentially the Kalman filter takes a weighted average of the prediction ˆ ( / 1)k k −x , based on 
the previous estimate ˆ ( 1/ 1)k k− −x , and a new observation ( )kz  to estimate the state of 
interest ˆ ( / )k kx . This cycle is repeatable. 

2.2 The Extended Kalman Filter 

 Albeit Kalman filter is the optimal minimum mean squared (MMS) error estimator for a 
linear system, hardly would one find such a system in reality. In fact the systems considered 
in this chapter are purely non-linear systems. A solution is found in the Extended Kalman 
Filter (EKF) which uses a linearised approximation to non-linear models. The extended 
Kalman filter algorithm is very similar to the linear Kalman filter algorithm with the 
substitutions;

( )  ( ) and ( ) ( )x xk k k k→ →F f H h , where ∇fx(k)  and ∇hx(k) are non-linear functions of both 
state and time step, and fx(k), hx(k) are the process model and observation model 
respectively. Therefore the main equations in EKF can be summarized as follows; 
1. Prediction equations 

ˆ ˆ( / 1) ( ( 1/ 1) , ( ))k k k k k− = − −x f x u  (9) 

( / 1) ( ) ( 1/ 1) ( ) ( )Tk k k P k k k k− = ∇ − − ∇ +x xP f f Q  (10) 

2. Update equations 

ˆ ˆ( / ) ( / 1) ( )[ ( ) ( / 1)]k k k k k k k k= − + − −x x W z h  (11) 

( / ) ( / 1) ( ) ( ) ( )Tk k k k k k k= − −P P W S W  (12) 

Where
( ) ( ) ( / 1) ( ) ( )Tk k k k k k= ∇ − ∇ +

x x
S h P h R  (13) 
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2.3 Filter Consistency 

The SLAM formulation presented in the previous section represents the posterior as a 
unimodal Gaussian. Thus the state estimates are parameterized by what is known as the 
moments parameterization. An important ramification of this representation is that not only it 
represents the current mean ˆ ( / )k kx but also gives an estimate of the covariance ˆ ( / )k kP , and 
when the filter is consistent, the estimated covariance should match the Mean Square Error of 
the true distribution. As will be discussed in the following section this is widely used in 
interpreting EKF based SLAM results. 
However a more appropriate measure of consistency when the true state kx  is known could 
be arrived at using the normalized estimation error squared (NEES) as defined by (Bar-
Shalom et al., 2001), 

1ˆ ˆ( ) ( ( ) ( / )) ( / ) ( ( ) ( / ))Tk k k k k k k k kε −= − −x x P x x  (14) 

Under the hypothesis that filter is consistent and is linear Gaussian, 
k

ε is chi-square 
distributed with xn degrees of freedom.  Where xn is the dimension of kx .

[ ( )] xE k nε =  (15) 

Using multiple Monte Carlo simulations to generate N independent samples, the average 
NEES can be calculated as 

1

1 N

k ik
iN

ε ε
=

=  (16) 

Then under the previous hypothesis ( )N kε  will have a chi-square density with xNn degrees
of freedom. Then the above hypothesis is accepted if 

1 2( ) [ , ]k r rε ∈  (17) 

where the acceptance interval is determined on a statistical basis. 

2.4 An Example 

 To illustrate the formulation of the standard EKF, lets consider an example where a simple 
differential driven robot traversing on a 2D plane. The robot is equipped with a sensor 
capable of making 3D measurements to point features in the environment (Fig. 1). The robot 
state is defined by [ ]TX x yr r r rϕ= , where xr and yr denotes location of the robot’s rear axle 
centre with respect to a global coordinate frame and r is the heading with reference to the 
x-axis of the same coordinate system. Landmarks are modelled as point features, 

Tx y zi i ii =p  , i = 1,…,n. The vehicle motion through the environment is modelled as a 
conventional discrete time process model as in (9). 

( 1) ( ) T ( ) cos( ( ))

( 1) ( ) T ( ) sin( ( ))

( 1) ( ) T ( )

r r r

r r r

r r

x k x k V k k

y k y k V k k

k k k

ϕ
ϕ

ϕ ϕ ω

+ +

+ = +

+ +

 (18) 
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ΔT is the time step, V(k) is the instantaneous velocity and (k) is the instantaneous turn-rate. 
The observation model can be represented as,  

( 1)

( 1) ( 1)

( 1) ( 1)

x

y

z fi

z k a

Z k z k b

z k z k

+

+ = + =

+ +

 (19) 

where

( ( 1) ( 1)) cos( ( )) ( ( 1) ( 1)) sin( ( ))

( ( 1) ( 1)) sin( ( )) ( ( 1) ( 1)) cos( ( ))

fi r r fi r r

fi r r fi r r

a x k x k k y k y k k

b x k x k k y k y k k

ϕ ϕ

ϕ ϕ

= + − + + + − +

= − + − + + + − +

It is to be noted that each feature is defined by a point in 3D space, ( ) [ ( ), ( ), ( )]
T

fi fi fi fik x k y k z k=X .

Figure 1. The robot in 3D world coordinates observing a feature in 3D space. 

Fig. 2 (a) shows a simulated environment with the path robot has taken amongst the 3D 
features. Fig. 2 (b) depicts the results of this example implementation on the simulated 
environment. The three graphs depict the three components of the robot pose. In the top 
graph of Fig. 2 (b), the middle line represents error between the EKF estimate and the actual 
value of the x-component of the robot pose against the time. The two outer lines mirroring 
each other are the 2-standard deviation estimates (2-sigma).  When the filter is well tuned the 
error lies appropriately bounded within these 2-sigma limits. Fig. 2 (c) illustrates a case of 
filter inconsistency where the filter has become optimistic.  
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Figure 2. (a) Simulated environment: solid line – true path, dashed line – odometry path, * - 
features. (b) State errors with estimated 2-sigma bounds for a well tuned filter (c) An 
inconsistent filter 
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3. Stereo Vision  

Generally, more precise the sensors used in SLAM more tractable and practical the solution 
is. Underlying characteristics of the sensor play an important role in determining the scale 
and practical use of the SLAM algorithm. Sensors such as laser have proven to be very 
precise in nature and have shown to work well in large environments for extended periods 
of time (Guivant, 2002; 2003; Wang, 2004). However vision is yet to prove its application in 
similar environments. In vision, successful implementations to date have used either large 
baseline stereo cameras (Davison, 1998; Jung, 2004), camera configurations with more than 
two cameras(Se et al., 2002) providing refined observations or single camera bearing only 
(Kwok and Dissanayake, 2003; 2004) methods. Principal aim of this section is to asses the 
performance of a small baseline binocular stereo camera equipped with wide angle lenses in 
the context of robotic SLAM.  

3.1 The Sensor 

Stereopsis or Stereoscopic vision is the process of perceiving depth or distances to objects in 
the environment. As a strand of computer vision research stereo vision algorithms have 
advanced noticeably in the past few decades to a point where semi-commercial products are 
available as off the shelf devices. However a more augmented approach is needed to realize a 
sensor useful in SLAM. Following list is an attempt to enumerate the essential components 
of such a sensor in the context of SLAM. 
(1.) Stereo camera-hardware for acquiring stereo images (2.) Calibration information-
contains intrinsic and extrinsic information about the camera necessary for correcting image 
distortion and depth calculation (3.) Interest point (features) selection algorithm-mechanism 
through witch naturally occurring features in the environment are selected for integration in 
the state vector (4.) Feature tracking algorithm-Image based mechanism used for data 
association (5.) Stereo correspondence algorithm-estimates the disparity at corresponding 
pixels (6.) Filtering-mechanisms used to remove spurious data. A schematic of the 
components along with interactions amongst each other is outlined in Fig. 3.  

3.2 Sensor Error Analysis 

As mentioned in the beginning of the chapter characteristics of a sensor dictates the limits of 
its applications. In the following sections a discussion of an empirical study of the particular 
sensor of interest is given based on two representative experiments conducted. It was found 
that even though quantitative error analyses of stereo, based on static cameras are available 
in the literature they do not necessarily represent the effects of a moving camera. This study 
fills a void on specific characterisation of noise performance of small baseline large field of 
view camera in respect to SLAM. In this context several robotic mapping experiments were 
carried out in order to understand the behaviour of sensor noise.  
From previous section on camera modelling the triplet [ ], ,

Tu v d=z  forms the principal 
observation z  by the sensor. Where (u,v) being the image coordinates of a feature and d is 
the disparity. Assuming that the errors in the observations to be additive z can be written 
as,

( , )true trueζ= +z z z  (20) 
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Where
true

z  being the true state of the observation and  being the additive noise component 
dependent on the sensor characteristics ξ  and on the true state itself as will be shown 
empirically later. Modelling and understanding the behaviour of  is the subject of 
discussion in sections 3.4 and 3.5. In section 3.6 the discussion continues on modelling the 
error behaviour of the projected form 

c
z  of this observation in to the 3D coordinate frame.  

Figure 3. The vision system for a SLAM implementation 

3.3 Mapping Experiments 

References are made to the two experiments described below in the following sections. 
Experiment 1- A pioneer robot mounted with the stereo camera was moved on a controlled 
path while capturing set of images at each 0.02m interval. The feature selection algorithm 
was allowed to select 30 features at the beginning of the sequence. The tracking algorithm 
attempts to track these features between consecutive images.  
Experiment 2- Again the robot was moved on a controlled path while observing artificial 
features laid on a large vertical planar surface. Features were laid out so as to cover the 
whole field of view of the cameras. A SICK laser was used to maintain parallel alignment 
between the camera and the surface and to measure the nominal distance between the robot 
and the surface. Robot was moved in 0.05m increments from a distance of 6m to 1m. 
In this experiment 20 features were initialised at each stop and were then tracked for 29 
consecutive images. For analysis of this data, at least 9 features were selected manually 
covering the widest possible area of the planar surface at each stop point. This set of features 
would then represent the expected sensor behaviour at the given distance. 
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Figure 4.  Rectified  images overlaid with features at (a) 5.4 m (b) 3.9 m (c) 2.4 m (d) 0.9 m 



Vision Systems: Applications 572

3.4 Uncertainty in Disparity 

In order to establish an error model for the disparity an analyses based on the finite data 
series from experiment 2 was performed. The data presents a unique perspective on the 
variance in disparity as observations are made at varying distances. In this case an 
approximate range between 1m and 6m inclusively. This depth range translates to an 
effective disparity range approximately between 1 and 15 pixels. The stereo correlation 
algorithm is set to search for a pixel range between 1 and 32.  
Following general statistical procedures it is possible to estimate a set of parameters that 
represent the disparity observation process based on this finite sequence of data. Fig. 5 (a) 
shows the overall variation in disparity. This is based on the calculated disparity at each 
individual feature that were manually selected in each initial image combined with all the 
points that were tracked consecutively are pooled together by subtracting the disparity 
means corresponding to each individual tracking sequence.  
Although by the analysis of the autocorrelation it is easily established that the process is 
‘white’ the general assumption of the distribution being Gaussian is an oversimplification of 
the true distribution. Especially in the case of small baseline cameras and wide-angle lenses 
this variation is a complex combination of local biases introduced in the image rectification 
process and stereo correlation mismatches undetected by the various filtering mechanisms. 
The distortions introduced by wide-angle lenses induce biases at each pixel in the image.  
Even though they are constant it is extremely difficult to accurately measure the individual 
component at pixel level. Also the area correlation algorithm used to estimate the disparities 
itself is prone to gross errors depending on the construct of the environment in which the 
images are captured.  
In order to understand these subtle variations it is best to analyse the variation in disparity 
at different depths independently. Fig. 5 (b) shows the variation in observed disparity 
against the expected disparity. Again the data from experiment 2 are used in the analysis. In 
this the disparities of the features selected at each distance along with the consecutively 
tracked points are pooled together and the resulting combined data are subtracted from the 
population mean.

a.) b.) c.) 

Figure 5. Disparity error. (a) Distribution (b) Zero mean error distribution with depth (c) 
Zero mean standard deviation (log scale). The spike in standard deviation is due to a stereo 
mismatch that was not detected by any of the heuristics applied in stereo correspondence 
algorithm 
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Several observations can be made. Firstly, data still contains many visible outliers that are 
difficult to be eliminated by the various smoothing operations. Secondly a rather intuitive 
observation is the correlation in the variance of the disparity distribution with the expected 
disparity. As would be expected variance is smaller for features seen from afar and it 
increases gradually with nearby features. For faraway features the disparity is small and 
also the discriminatory information contained within the correlation area is higher 
compared to a closer observation. This is especially true for environments where lack of 
texture persists. This gives a higher confidence to the disparity values estimated for features 
afar as opposed to ones closer. This is a better interpretation for the variance in disparity and 
based on this interpretation it is better to assume a varying disparity standard deviation 
correlated with the estimated disparity value as opposed to the general practice of assuming 
a constant disparity standard deviation. The observation standard deviation is shown in Fig. 
5 (c).  
It is difficult to estimate an exact relationship between the disparity variation with the 
estimated disparity. Thus an empirically generated curve based on the results shown in Fig. 
5 (b) is used. It was also observed that the variance estimated thus is slightly higher than the 
one shown above in Fig. 5 (a). This stems from the fact that the local biases are present in the 
data shown in Fig. 5 (b). This can be illustrated by scrutinising the local distributions present 
in the disparity data corresponding to each feature location at a given depth. Fig. 8 shows an 
example local distributions contributing to the overall distribution at a given depth. As can 
be noticed there are independent local distributions dispersed from the true expected mean. 
These are a combination of local biases in the image, stereo mismatches and any 
misalignments of the stereo hardware and the reference system. For practical purposes 
correcting these errors is difficult and an all encompassing error model is thus adapted. 

3.3 Uncertainty in u and v
In order to model the errors in u and v for SLAM a dynamic camera error model needs to be 
studied which would include the behaviour of the tracking algorithm as well as other 
dynamics involved with the camera motion. From experiment 1 and 2 it is possible to extract 
a representative set of data for this purpose. Again as discussed for the case of disparity 
error, u and v also carries components of local bias due to distortion effects and other 
misalignments. In addition the effects of the feature tracker also contribute when the 
augmented sensor representation is considered.  
For this analysis only a single image is considered at each depth. These images are then 
assembled from a depth of 1m to 6m. 16 features covering the entire image plane are then 
initialised in the image corresponding to 1m depth and are then consecutively tracked 
through to image at 6m depth. This while tracking a set of features at fixed locations in 
space will map to varying u,v coordinates. This essentially captures the overall behaviour of 
u,v in the entire image plane. 
Fig. 6 shows the results for both parameters where cumulative data for each point is 
subtracted by the expected values at each point and then combined together. Qualitatively 
these results resemble Gaussian distributions. However it is possible to observe various 
artefacts appearing in the tails of the distributions indicating that a considerable amount of 
spurious data is present for the reasons discussed earlier. This spuriousness in u,v and d 
pose considerable challenges to a successful implementation of a SLAM algorithm. Various 
issues arising from these observations are discussed in the next section  
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Figure 6. Error distribution (a) in u with standard deviation = 1.34 (b) in v with standard 
deviation =  1.53 

4. Issues and Solutions 

Primary goal of this chapter is to elucidate several theoretical and practical issues that have 
been noted during many implementations of stereo vision based SLAM. In this section a 
series of such issues that contributes to filter divergence, increase in computational burden 
and/or complete failure of the filter are illustrated. In each sub-section an issue is presented 
first with its effects on the algorithm and then possible solutions in averting the 
consequences are discussed.  

4.1 Limited Field of View 

One of the most fundamental issues that plague vision based SLAM is the limited field of 
view (FOV) of the sensor. When compared to traditional sensors like laser and radar the 
FOV of vision sensors are 20~40% narrower. Even though the 2D structure of the sensor 
affords more information the narrow FOV limits the ability to observe features for 
prolonged periods, a desirable requirement to reduce error bounds in the state estimations – 
a corollary of the results proven in (Dissanayake et al., 2001).  As noted in several 
works(Bailey et al., 2006; Huang and Dissanayake, 2006), notably the increase in heading 
uncertainty tends to increase the possibility of filter divergence. This has been observed in 
our implementations, especially in confined office like environments where many of the 
features observed vanishing from the FOV rapidly and re-observation of them delayed until 
a large loop is closed.  
Slight improvement to this situation is brought through the introduction of wide angle 
lenses. However, the choice is a compromise between the sensor accuracy and the FOV. 
Wide angle lenses suffer from noticeable lens distortion (Fig. 7 (a)) and the rectification (Fig. 
7 (b)) process introduces errors. One undesirable effect of using such lenses is the local 
biases in disparity calculation. To illustrate this consider a static camera observing a perfect 
plane which is parallel to the camera x-y plane. Disparity results of observing several 
features on this plane are plotted in Fig. 8. As can be seen the biases at various points are 
noticeable and are high as 2-pixels. This at most violates the fundamental assumption of 
Gaussian noise model in SLAM.In order to alleviate this issue it is necessary to estimate and 
apply radial distortion parameters in the rectification process. Also in severe cases, or when 
higher accuracy is demanded look-up tables are suggested.  
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a.) b.) 
Figure 7.An image from a wide angle lens. a.) raw. b.) rectified 
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Figure 8. Local biases in disparity (Expected mean disparity is 14.7) 

4.2 Number of Features 

Each feature added to the filter contributes new information. However with each new 
feature added to the state vector increases the computational burden. Even with 
sophisticated algorithms available computational complexity of SLAM still remains high 
and grows with each added state. Also depending on the data association mechanism used 
the ambiguity of features could increase leading to false association. This necessitates a 
reliable ranking mechanism (Shi and Tomasi, 1994) to optimize the number of features 
processed per image. The ranking criteria should not only look at which are “good features 
to track” but also its viability as a 3-D observation. Therefore it is possible to integrate other 
stereo confidence measures like uniqueness in to the ranking mechanism.  Such an 
integrated approach alleviates selecting features that are ineffective as 3D measurements.  
Another common issue seen especially in indoors with highly structured built environments 
is the lapses in suitably textured surfaces needed to generate reliable features and depth 
measurements. In extreme cases we have observed heavy reliance on other sensors such as 
odometry in filters. This is a limitation on point feature based implementations and 
alternative feature forms such as lines and curves would be more appropriate depending on 
the environment in which the application operates. 
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The minimum number of features per image is also dictated partially by the environment 
the application operates as well as the accuracy of the stereo algorithm. As shown earlier the 
depth accuracy correlates with the depth measured. Thus it is necessary to observe both 
features that are closer to the camera for short term translational accuracy as well as ones 
that are further away for long term rotational accuracy. An issue with most feature selectors 
is that they tend to cluster around small patches of highly textured areas in a scene. This 
may or may not result in satisfying the condition stated above. In our experience the best 
value for minimal number of features is thus selected by repeated experimentations in the 
intended environment.  

4.3 Spurious Features 

Spurious features occur not only due to structure (e.g. Occlusion) but also due to gross 
errors in stereo calculations. For instance in Fig. 9 (a) the pole marked with the arrow and 
the horizontal edge of the partition in the foreground are two distinct disjoint enteritis. 
However on the image plane the apparent intersection of the two edges is a positive feature 
location. Such occlusions results in physically non existent features. These features are 
catastrophic in a SLAM implementation. A possible method was discussed in (Shi and 
Tomasi, 1994) in identifying such occlusions by a measure of dissimilarity.

a.) b.) c.) 

Figure 9. Spurious observations.  (a) A rectified image showing several edge profiles. (b) 
Disparity image (c) Close-up view of the depth profile with a mismatch (see discussion for 
details) 

0 20 40 60 80 100 120 140
-2

0

2

x
 p

o
s
e

(m
)

0 20 40 60 80 100 120 140
-1

0

1

y
 p

o
s
e

(m
)

0 20 40 60 80 100 120 140
-2
0
2

time

h
e
a
d
in

g
(r

a
d
)

0 20 40 60 80 100 120 140
-1

0

1

x
 p

o
s

e
(m

) 
  

0 20 40 60 80 100 120 140
-0.5

0

0.5

y
 p

o
s

e
(m

) 
  

0 20 40 60 80 100 120 140
-1
0
1

time (s)

h
e

a
d

in
g

(r
a

d
) 

 

a.) b.) 

Figure 10. Robot pose error with 2-sigma error bounds (a)  effects of spurious data (b.) with 
the RanSaC like filter applied 

Depending on the image composition it is possible to generate occasional mismatches (Fig. 
9(c)) in stereo correspondence.  Most stereo algorithms include multiple heuristics 
(Konolige, 1997 ) to alleviate this issue. However it is still advisable to include a statistical 
validation gate (Cox, 1993) for the occasional mismatch that is not filtered by such heuristics. 

Mismatch 
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A third set of spurious features were observed due to feature tracking mechanisms used. 
These features tend to drift arbitrarily in the image plane. Such features not only are harder 
to detect by conventional statistical validation gates but also tend to contribute to filter 
inconsistencies. A solution to such spurious features based on the RanSaC (Fischler and 
Bolles, 1981) algorithm was discussed in (Herath et al., 2006b). Fig. 10 shows SLAM results 
for a real data set with (Fig. 10 (b)) and without (Fig. 10 (a)) the RanSaC like filter while 
maintaining other filter parameters identical.   In this instance the consistency has improved, 
however, inflated observation noise parameters are used in both cases to accommodate the 
nonlinearities (see 4.5) in the observation model. 

4.4 Static vs. Dynamic Noise Parameters 

Most researchers tend to use static noise parameters in their SLAM implementations. These 
are the noise parameters obtained by observing static features through a static camera. 
However a more realistic set of values can be obtained by estimating these parameters 
through data obtained by a moving camera especially in the same application environment. 
An experiment of this nature was discussed in (Herath et al., 2006a). This encompasses not 
only the error variation in camera, but also the error variations in the feature tracker and 
other difficult to quantify dynamic factors. This invariably tends to increase the stereo noise 
parameters and in some cases is much higher than the theoretical sub-pixel accuracies 
quoted by stereo algorithms. 
Another aspect of noise parameters was illustrated in section 3.2. For a better estimate of the 
noise parameters it is possible to utilise the empirical knowledge of variation in disparity 
standard deviation with measured depth. Also in (Jung and Lacroix, 2003) presented 
another observation, where the variation in disparity standard deviation is correlated with 
the curvature of the similarity score curve at its peak. This knowledge can enhance the 
quality of the estimation process. 

4.5 Nonlinearity Issues 

Realistic SLAM problems are inherently non linear. While EKF implementations are shown 
to be able to handle this nonlinearity an emerging debate in recent years suggest that the 
nonlinearity could lead to filter inconsistency(Bailey et al., 2006; Huang and Dissanayake, 
2006; Julier and Uhlmann, 2001). 
These studies concentrate on eventual failure of the filter in large scale and/or long term 
SLAM implementations. On the other hand the few stereo vision based EKF solutions 
present in the literature altogether neglects the filter consistency analysis. It is well known 
that the standard geometric projection equations used in stereo vision are highly nonlinear 
and suffers from inherent bias (Sibley et al., 2006; 2005). It is imperative then that an analysis 
is carried out to estimate the effects of this nonlinearity in the context of EKF SLAM. For this 
reason a set of Monte Carlo simulations were conducted and were analysed using the NEES 
criterion presented in section 2.3. The simulated environment presented in section 2.4 (Fig. 2 
(a)) was used throughout these Monte Carlo runs.  N [=50] runs were carried out for each 
implementation with [2.36, 3.72] being the 95% probability concentration region for ( )kε  since 
the dimensionality of the robot pose is 3.  
In Fig. 11 (a) the average NEES for the example in 2.4 is shown to be well bounded. This 
indicates that for the small loop considered in this example a standard EKF yields consistent 
results.  For this simulation, the observation noise (R(k)) has components 
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( = = =0.05m)x y zσ σ σ  and process noise (Q(k)) will remain at ( =0.05m/s, =5deg/s)v wσ σ for all 
the simulations. 
In the second simulation while adhering to the previous formulation, the observations are 
now subjected to the geometric transformations of a standard stereo vision sensor. 

; ;
Bf Bu Bvx y z
d d d

− −= = =  (21) 

Where B is the camera baseline and f the focal length. As discussed in the previous section 
Gaussian noise can be assumed for (u,v,d) and a transformed noise matrix must be used 
(Herath et al., 2006a) for  R(k). For all the simulations following noise values 
( = = = )1.34, 1.53, 0.65

u v d
σ σ σ estimated from experimental analysis were used.  The average 

NEES results for this simulation are presented in Fig. 11 (b). The unacceptably large values 
for the statistics indicate that a straight forward SLAM implementation does not yield 
consistent results. An important parameter in this experiment is the small baseline (B) used.  
At a nominal 9cm this corresponds to a commercially available stereo head on which most 
of our real experiments are based on. It is possible to show through simulation that lager 
baselines give rise to lower nonlinearity effects. However it remains a key factor for most 
stereo heads used in indoor and outdoor scenarios.  
To further illustrate this phenomenon, consider the Gaussian random variable [ , ]

Td u (only
two components used for clarity) representing the disparity and horizontal image 
coordinate for a given feature at 10cx m=  and 1cy m= . With B =0.09m and f = 150 pixels, 
this translates to mean disparity, d of 1.32 pixels and mean u  of 15 pixels. A Monte Carlo 
simulation can be carried out using (21) to transform Gaussian distributed [ , ]

Td u

into [ ],
T

x y
z z . Fig. 12 (a) and (b) show the resulting distributions with 0.09m and 0.5m as 

baselines respectively. This clearly indicates the non Gaussian nature of the transformed 
observations when a small baseline camera is used (Fig. 12 (a)). The smaller the baseline is 
the shorter the range is at which the nonlinear effect manifest. 
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Figure 11. Average NEES of the robot pose (a) Standard EKF (b) Standard EKF with stereo 
observations
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a.) b.) 

Figure 12. Errors in projective mapping (a) B=0.09m (b) B=0.5m, linearized and 
approximated Gaussians are overlapping 

A different choice of observation model is tested that yields improved results. As shown 
above the main cause for the inconsistency is due to the highly nonlinear projective 
mapping. It is possible to derive a formulation where the principal observation becomes 
(u,v,d) instead of the widely used (x,y,z) as follows.  (Compare this with (19)) 

[ ]
ˆ ( 1)

ˆ ˆ( 1) ( 1)

ˆ ( 1)

u

T

v

d

z k
f

k z k y z B
x

z k

+

+ = + = − −

+

z  (22) 

where
ˆ ˆ ˆ ˆ( ( 1) ( 1)) cos( ( )) ( ( 1) ( 1)) sin( ( ))

ˆ ˆ ˆ ˆ( ( 1) ( 1)) sin( ( )) ( ( 1) ( 1)) cos( ( ))

ˆ ( 1)

fi r fi r

fi r fi r

fi

x x k x k k y k y k k

y x k x k k y k y k k

z z k

φ φ

φ φ

= + − + + + − +

= − + − + + + − +

= +

This alleviates necessity of the linearized transformation of the noise matrix (R(k)) as 
measurements are well represented with Gaussian models. Simulation results with the new 
observation model for average NEES are presented in Fig. 13 (a). Although the 
improvement over previous model is apparent, filter still remains optimistic. Finally the 
unscented Kalman filter (UKF) (Julier and Uhlmann, 2004) is implemented with the 
previous observation model. The UKF performs a derivative free transform of the states 
resulting in better estimates. UKF is shown to work well with highly non linear systems. 
However the Monte Carlo simulation results indicate (Fig. 13 (b)) that the improvement 
against consistency is minimal. 
These observations lead us to the belief that standard SLAM implementations could yield 
inconsistent results even for comparatively smaller loops given small baseline stereo 
cameras are used. An observation hitherto has not been studied. Current solutions for this 
issue remains at either in use of wider baseline cameras or in the implementation of small 
loops with sub map (Williams, 2001) like ideas. Better consistency could also be expected by 
improving the overall noise performance of the vision system. This includes improving the 
stereo correspondence, resolution of the images as well as improving the stability of the 
mobile platform.   



Vision Systems: Applications 580

0 50 100 150 200 250 300

5

10

15

20

25

Step

N
E

E
S

0 50 100 150 200 250 300

0

5

10

15

20

Step

N
E

E
S

a) b 

Figure 13.  Average  NEES of the robot pose (a) (uvd)-observation model (b) UKF 

5. Conclusion 

In this chapter we have made an attempt to analyse the issues in stereo vision based SLAM 
and proposed plausible solutions. Correct sensor modelling is vital in any SLAM 
implementation. Therefore, we have analyzed the stereo vision sensor behaviour 
experimentally to understand the noise characteristics and statistics. It was verified that the 
stereo observations in its natural form (i.e. [u,v,d]) can safely be assumed to represent 
Gaussian distributions. Then several SLAM implementation strategies were discussed using 
stereo vision. Issues related to limited field of view of the sensor, number of features, 
spurious features, noise parameters and nonlinearity in the observation model were 
discussed. It was shown that the filter inconsistency is mainly due to inherent nonlinearity 
presence in the small baseline stereo vision sensor. Since UKF is more capable in handling 
nonlinearity issues than that of EKF, an UKF SLAM implementation was tested against 
inconsistency. However, it too leads to inconsistencies. This shows that even with 
implementations that circumvent the critical linearization mechanism in standard EKF 
SLAM as in UKF, the nonlinearity issue in the stereo vision based SLAM can not be 
resolved. In order to address the filter inconsistency a more elegant solution is currently 
being researched based on smoothing algorithms which shows promising results. 
In conclusion this chapter dwelt on some obscure issues pertaining to stereo vision SLAM 
and work being done in solving such issues. 

6. References 

Bailey, Tim, Juan Nieto, Jose Guivant, Michael Stevens and Eduardo Nebot. (2006). 
Consistency of the EKF-SLAM Algorithm. In International Conference on Intelligent 
Robots and Systems (IROS 2006). Beijing, China. 

Bar-Shalom, Yaakow, X.-Rong Li and Thiagalingam Kirubarajan. (2001). Estimation with 
Applications to Tracking and Navigation. Somerset, New Jersey: Wiley InterScience. 

Clark, S. and G. Dissanayake. (1999). Simultaneous localisation and map building using 
millimetre wave radar to extract natural features. In IEEE International Conference on 
Robotics and Automation: IEEE. 

Cox, Ingemar J. (1993). A review of statistical data association techniques for motion 
correspondence.  International Journal of Computer Vision 10(1):53-66. 



Stereo Vision Based SLAM Issues and Solutions 581

Davison, A.J. and D.W. Murray. (2002). Simultaneous localization and map-building using 
active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):865 
- 880

Davison, Andrew J. (1998). Mobile Robot Navigation Using Active Vision. Thesis: University 
of Oxford. 

Davison, Andrew J., Yolanda Gonzalez Cid and Nobuyuki Kita. (2004). Real-Time 3D Slam 
with Wide-Angle Vision. In IFAC Symposium on Intelligent Autonomous Vehicles.
Lisbon.

Dissanayake, M.W.M.Gamini, Paul Newman, Steven Clark, Hugh F. Durrant-Whyte and M. 
Csorba. (2001). A Solution to the Simultaneous Localization and Map Building 
(SLAM) Problem. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
17(3):229-241.

Fischler, Martin A. and Robert C. Bolles. (1981). Random Sample Consensus: A paradigm for 
model fitting with applications to image analysis and automated cartography. 
Communications of the ACM 24(6):381 - 395. 

Guivant, Jose E. (2002). Efficient Simultaneous Localization and Mapping in Large 
Environments. Thesis. Sydney: University of Sydney. 

Guivant, Jose and Eduardo Nebot. (2002). Simultaneous Localization and Map Building: Test 
case for Outdoor Applications. Sydney: Australian Center for Field Robotics, 
Mechanical and Mechatronic Engineering, The University of Sydney. 

Guivant, Jose, Juan Nieto, Favio Masson and Eduardo Nebot. (2003). Navigation and 
Mapping in Large Unstructured Environments. International Journal of Robotics 
Research 23(4/5): 449-472. 

Herath, D. C., K. R. S. Kodagoda and Gamini Dissanayake. (2006a). Modeling Errors in 
Small Baseline Stereo for SLAM. In The 9 th International Conference on Control, 
Automation, Robotics and Vision (ICARCV 2006). Singapore. 

Herath, D.C., Sarath Kodagoda and G. Dissanayake. (2006b). Simultaneous Localisation and 
Mapping: A Stereo Vision Based Approach. In IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2006). Beijing, China: IEEE. 

Huang, Shoudong and Gamini Dissanayake. (2006). Convergence Analysis for Extended 
Kalman Filter based SLAM. In IEEE International Conference on Robotics and 
Automation (ICRA 2006). Orlando, Florida. 

Julier, S. J. and J. K. Uhlmann. (2001). A counter example to the theory of simultaneous 
localization and map building. In IEEE International Conference on Robotics and 
Automation, ICRA 2001. 

Julier, S. J. and J. K. Uhlmann. (2004). Unscented filtering and nonlinear estimation. 
Proceedings of the IEEE 92(3):401-422. 

Jung, I.K. (2004). Simultaneous localization and mapping in 3D environments with 
stereovision. Thesis. Toulouse: Institut National Polytechnique. 

Jung, Il-Kyun and Simon Lacroix. (2003). High resolution terrain mapping using low 
altitude aerial stereo imagery. In Ninth IEEE International Conference on Computer 
Vision (ICCV'03). 

Konolige, Kurt. (1997 ). Small Vision Systems: Hardware and Implementation. In Eighth 
International Symposium on Robotics Research.



Vision Systems: Applications 582

Kwok, N. M. and G. Dissanayake. (2003). Bearing-only SLAM in Indoor Environments 
Using a Modified Particle Filter. In Australasian Conference on Robotics & Automation,
eds. Jonathan Roberts and Gordon Wyeth. Brisbane: The Australian Robotics and 
Automation Association Inc. 

Kwok, N. M. and G. Dissanayake. (2004). An efficient multiple hypothesis filter for bearing-
only SLAM. In 2004 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2004)  

Kwok, N. M., G. Dissanayake and Q. P. Ha. (2005). Bearing-only SLAM Using a SPRT Based 
Gaussian Sum Filter. In IEEE International Conference on Robotics and Automation.
ICRA 2005. 

Se, Stephen, David Lowe and Jim Little. (2002). Mobile Robot Localization And Mapping 
with Uncertainty using Scale-Invariant Visual Landmarks. International Journal of 
Robotic Research 21(8). 

Shi, Jianbo and Carlo Tomasi. (1994). Good Features toTrack. In IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (CVPR '94) Seattle: IEEE. 

Sibley, G., G. Sukhatme and L. Matthies. (2006). The Iterated Sigma Point Filter with 
Applications to Long Range Stereo. In Robotics: Science and Systems II. Cambridge, 
USA.

Sibley, Gabe, Larry Matthies and Gaurav Sukhatme. (2005). Bias Reduction and Filter 
Convergence for Long Range Stereo. In 12th International Symposium of Robotics 
Research (ISRR 2005). San Francisco, CA, USA. 

Wang, Chieh-Chih. (2004). Simultaneous Localization, Mapping and Moving Object 
Tracking. Thesis. Pittsburgh, PA 15213: Carnegie Mellon University. 

Williams, Stefan Bernard. (2001). Efficient Solutions to Autonomous Mapping and 
Navigation Problems. Thesis. Sydney: The University of Sydney. 



30

Shortest Path Homography-Based Visual 
Control for Differential Drive Robots 

G. López-Nicolás, C. Sagüés and J.J. Guerrero 1

Universidad de Zaragoza 
Spain

1 Introduction  

It is generally accepted that machine vision is one of the most important sensory modalities 
for navigation purposes. Visual control, also called visual servoing, is a very extensive and 
mature field of research where many important contributions have been presented in the 
last decade [Malis et al.,1999, Corke and Hutchinson, 2001, Conticelli and Allotta, 2001, 
Tsakiris et al., 1998, Ma et al., 1999]. Two interesting surveys on this topic are [De Souza and 
Kak, 2002] and [Hutchinson et al., 1996]. In this work we present a new visual servoing 
approach for mobile robots with a fixed monocular system on board. The idea of visual 
servoing is used here in the sense of homing, where the desired robot position is defined by 
a target image taken at that position. Using the images taken during the navigation the robot 
is led to the target. 
A traditional approach is to perform the motion by using the epipolar geometry [Basri et al., 
1999, Rives, 2000, Lopez-Nicolas et al., 2006]. These approaches have as drawback that the 
estimation of the epipolar geometry becomes ill conditioned with short baseline or planar 
scenes, which are usual in human environments. A natural way to overcome this problem is 
using the homography model. In [Malis and Chaumette, 2000] it is proposed a method 
based on the estimation of the homography matrix related to a virtual plane attached to an 
object. This method provides a more stable estimation when the epipolar geometry 
degenerates. In [Benhimane et al., 2005] it is presented a visual tracking system for car 
platooning by estimating the homography between a selected reference template attached to 
the leading vehicle. A significant issue with monocular camera-based vision systems is the 
lack of depth information. In [Fang et al., 2005] it is proposed the asymptotic regulation of 
the position and orientation of a mobile robot by exploiting homography-based visual servo 
control strategies, where the unknown time-varying depth information is related to a 
constant depth-related parameter. 
These homography-based methods usually require the homography decomposition, which 
is not a trivial issue. Two examples of approaches which do not use the decomposition of 
the homography are [Sagues and Guerrero, 2005] which is based on a 2D homography and 
[Benhimane and Malis, 2006] which presents an uncalibrated approach for manipulators. 
We present a novel homography-based approach by performing the control directly on the 
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elements of the homography matrix. This approach, denoted as ”Shortest Path Control”, is 
based on the design of a specific robot trajectory which consists in following a straight line 
towards the target. This motion planning allows to define a control law decoupling rotation 
and translation by using the homography elements. This approach needs neither the 
homography decomposition nor depth estimation. In this work we have developed three 
similar methods based on the particular selection of the homography elements. Each 
method is suitable for di erent situations. 
The chapter is divided as follows, Section 2 presents the homography model developing its 
elements as a function of the system parameters to be used in the design of the controllers. 
Section 3 presents the Shortest Path Control with three di erent methods based on the 
elements of the homography. Sections 4 and 5 present the stability analysis of the controllers 
and the experimental results respectively. Section 6 gives the conclusions. 

2. Homography Based Model  

The general pinhole camera model considers a calibration matrix defined as  

, (1)

where x and y are the focal length of the camera in pixel units in the x and y directions 
respectively; s is the skew parameter and (x0,y0) are the coordinates of the principal point. 
We have that x=f mx and y=f my, where f is the focal length and mx, my are the number of 
pixels per distance unit. In practice, we assume that the principal point is in the centre of the 
image (x0=0, y0=0) and that there is no skew (s=0).
A 3D point in the world can be represented in the projective plane with homogeneous 
coordinates as p=(x,y,1)T. A projective transformation H exists from matched points 
belonging to a plane in such a way that p2=H p1. The homography between the current and 
target image can be computed from the matched points, and a robust method like RANSAC 
should be used to consider the existence of outliers [Hartley and Zisserman, 2004]. Taking 
advantage of the planar motion constraint, the homography can be computed from three 
correspondences instead of four, reducing the processing time. 
Let us suppose two images obtained with the same camera whose projection matrixes in a 
common reference system are P1=K[I 0] and P2=K[R –Rc], being R the camera rotation 
and c the translation between the optical centres of the two cameras. A homography H can 
be related to camera motion (Figure 1a) in such a way that 

(2)

where n=(nx , ny , nz)T is the normal to the plane that generates the homography and d is the 
distance between the plane and the origin of the global reference.  
We consider a mobile robot in planar motion (Figure  1b). In this case the robot position is 
defined by the state vector (x,z, ) and the planar motion constraint gives:  
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. (3)

Taking this into account, the homography corresponding to a planar motion scheme can be 
written as

. (4)

The second row of the matrix will be ignored in the design of the control law as it does not 
give useful information. Developing expression (2) we obtain the homography elements as a 
function of the parameters involved: 

(5)

The analysis of these homography elements will lead to the control law design. After 
computing the homography from the image point matches it has to be normalized. We 
normalize by dividing H/h22, given that h22 is never zero due to the planar motion constraint. 

 (a) (b) 
Figure 1. (a) Homography from a plane between two views. (b) Coordinate system 
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3. Visual Servoing with Shortest Path Control
In this Section the Shortest Path Control is presented. The control law design is directly based 
on the homography elements. Given that our system has two variables to be controlled (the 
velocities v and ), we need at least two parameters of the homography to define the control 
law. Several possibilities appear depending on which homography elements are selected. In 
our approach we have developed three similar methods which are suitable for di erent
situations. In the experimental results we show the performance of these methods as the 
calibration or the scene change. 
Let us suppose the nonholonomic di erential kinematics to be expressed in a general way as  

 (6) 

where x=(x,z, )T denotes the state vector and u=(v, )T the input vector. The particular 
nonholonomic di erential kinematics of the robot expressed in state space form as a 
function of the translation and rotation robot velocities (v, ) is: 

. (7)

In the Shortest Path Control approach, we propose decoupling the motion, rotation and 
translation, by following a specific trajectory. Then, we design a navigation scheme in such a 
way that the robot can correct rotation and translation in a decoupled way. The resulting 
path of this motion is shown in Figure  2. 

Figure  2.  Motion trajectory of the robot consisting in three steps 

The motion can be divided in three sequential steps. In the first step the robot rotates until 
the camera points to the target position. Then, the robot performs a straight translation in 
the second step until the target position is reached up to a rotation. Finally, the orientation is 
corrected in the third step. The key point is to establish what conditions have to be held 
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during each phase of the navigation. When the motion starts, the initial homography is the 
general case (5). It can be seen in Figure 2 that during the second step the robot moves in a 
straight line with a constant angle respect the global reference ( = t). From our reference 
system we can obtain the geometrical expression x = – z tan t. Using this expression in (5) 
we obtain the particular form of the homography that is held during the straight motion of 
the second step. 

. (8)

At the end of the second step the robot has an orientation error and no translation error 
(x=0, z=0, = t). Taking this into account, the homography matrix that results at the end of 
the second step (i.e. in the target position up to orientation error) is  

. (9)

This previous expression also implies that det(H) = 1. Finally, at the end of the navigation, 
when the robot reaches the target pose with the desired orientation the homography will be 
the identity matrix, 

(10)

The particular expressions of the homography just deduced are related graphically with its 
corresponding positions in Figure  3. It can be seen that the goal of each step is to move the 
robot having as reference the next desired expression of the homography. 

Figure  3. The number below each figure denotes the equation of the homography that holds 
in that position. In each step, the numbers give the homography equations at the start and at 
the end of the step 

Now we briefly introduce the expressions used to define the controllers of the three di erent 
methods of the Shortest Path Control. These are detailed in the following subsections. From 
the previous particular expressions of the homography, we can define the conditions that 
will be used in each step of the navigation to drive the robot. In the first step we want to 
reach the orientation = t, where the robot points to the target. The forward velocity is set 
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to zero (v=0) and from (8) we could use h11, h12 or h13 to set the angular velocity of the robot 
in a proportional control: 

(11)

(12)

(13)

In this step we have rejected elements h31, h32 and h33 because they require knowledge about 
the plane and the robot position, which are unknown. Each one of these expressions (11), 
(12) or (13) can be used to correct rotation in the first step. The selection of the expressions 
for each of the three methods depending on the calibration hypothesis is explained below. In 
method I camera calibration is supposed to be known, while in Method II and III no specific
calibration is required. 
Once the orientation t is gained, the second step aims to get translation to the target equal 
to zero (x=z=0), keeping the orientation constant during the motion ( = t). In this case we 
could use the parameters h31, h32 or h33 from (9) to set the robot velocity as 

(14)

(15)

(16)

In this second step we have rejected elements h11, h12 and h13 for the correction of v because
the value of these elements is constant during this step. Any of the expressions (14), (15) or 
(16) can be used to compute v during this step. Odometry drift or image noise appear in real 
situations, so the orientation is corrected to avoid possible errors. Thus, in the three methods 
the rotation during second step is corrected respectively with the same control of the first 
step.
In the last step the robot has zero translation error and only needs to perform a rotation in 
order to reach the target orientation, 

(17)

(18)

Then, the velocity is set to zero in this step (v=0) and the rotation can be corrected with 
expressions of (17) or (18). We have selected =–k  h13 for the three methods because of the 
robustness to noise of h13 with respect to the rest of the homography elements. Experimental 
results presented support this decision. 
The control loop of the scheme presented is shown in the diagram of Figure  4. An image in 
the current position is taken at each loop of the control. The homography that links it with 
the target image is computed from the feature matching. Using the homography, the control 
performs the three steps. When the homography-based control loop finishes, the robot is in 
the target position, the current and the target images are the same, and the homography is 
the identity matrix. Next, the details of the three methods of the Shortest Path Control for
visual servoing based on homographies for mobile robots are presented in detail. 
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Figure  4. Diagram of the control loop 

3.1 Method I: Calibrated Method  

In this method we suppose that the calibration matrix of the camera is known, and 
therefore, the value of the focal length x is given. In the first step v is set to zero while the 
angular velocity could be corrected with (11) or (13), needing the value t. This approach is 
based on the key value t, but this value is initially unknown. From (8) we have that 
h11=cos t and h13= xsin t. Taking this into account, we can obtain the next equation, which 
is true when = t,

. (19)

Using this expression we do not need to know the value of t to correct the orientation in 
the first step, and this is corrected until (19) is satisfied. In step two, the orientation is 
corrected with the same expression to take into account odometry drift or noise. The 
velocity v in the second step is corrected using (16) which is combined with h11 from (9) to 
remove the unknown parameter t from the expression of the control. Third step is based 
on (17). Then, we define the Method I as  

(20)

where k  and kv are the control gains.  
We avoid the use of the parameter t in the velocity v of the second step by using the value 
of h11 from (9) as previously explained. In any case t could be computed easily when the 
first step is finished from (11) or (13). This method needs to know the calibration of the 
camera (parameter x) and this is its main drawback. The next two methods proposed work 
without knowing this parameter and they have shown to be independent of the focal length. 
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3.2 Method II: Uncalibrated Method  

The previous method is calibrated. In a system, the need of calibration means disadvantages 
in terms of maintenance cost, robustness and adaptability. In Method II the calibration 
camera is considered to be unknown, which has many advantages in practice. We can define
the control scheme of the Method II selecting expressions where the calibration parameters 
do not appear explicitly. These expressions are (12), (15) and (17). Then, the control is 
defined as 

(21)

where k and kv are the control gains. With this method the robot is controlled by using a 
camera without specific calibration; although we assume that the principal point is in the 
centre of the image, this is a good supposition in practise. Method II requires the plane 
inducing the homography not to be vertical respect our reference because it is needed ny 0. 
This is due to the direct dependence of the parameters used from the homography to ny.
This could be a problem since human environments are usually full of vertical planes 
(walls). In any case the method works if we guarantee that vertical planes are not used, for 
example constraining to the floor [Liang and Pears, 2002] or the ceiling plane [Blanc et al., 
2005].

3.3 Method III: Method with Parallax 

The previous method works without specific calibration, but it requires the scene 
homography plane not to be vertical and this could be a problem in man-made 
environments, usually full of vertical planes. Method III uses the concept of parallax relative 
to a plane and overcomes the problem of vertical planes. Using the parallax [Hartley and 
Zisserman, 2004] the epipole in the current image can be easily obtained from a 
homography H and two points not belonging to its plane. In the first step of Method III the 
objective is to get orientation = t. In this position the robot points to the target, so the 
camera centre of the target is projected to (x0,y0) in the current image and then ec=(0,0).
Given that the robot moves in a planar surface we only need the x-coordinate of the epipole 
(ecx). Then we define the correction of the orientation in step 1 and step 2 with a proportional 
control to ecx. Once ecx=0 the robot is pointing to the target position. The other expressions of 
the control are obtained in a similar way to the previous methods using (16) and (17). Then, 
we define the scheme of Method III as  

(22)

When the robot is close to the target position and the translation is nearly zero, all the points 
in the scene can be related by the homography. In this situation the parallax is not useful to 
correct the orientation. Before this happen we change the orientation control at the end of 
step 2 to the expression (11). This expression needs the value of t, which can be computed 
previously with the same equation while the rotation is corrected with the parallax 
procedure. Here, we use neither expression (15) because vertical planes can be easily found 
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in human environments nor expression (19) because it needs specific calibration. We can 
detect easily when the parallax is not useful to work with by measuring the parallax of the 
points not belonging to the plane of the homography. If the result is under a threshold, the 
parallax procedure is not used any more. In the simulations presented with this approach 
the threshold is set to 5 pixels. 
In the three methods presented the homography is not decomposed, and neither the robot 
coordinates nor the normal of the plane are computed. This approach requires the selection 
of the signs of some of the control gains depending on where is the initial robot position and 
what is the orientation of the plane detected. This can be easily done by taking advantage of 
the parallax relative to the plane by computing it once at the start. Thus, the sign of the gains 
is easily determined. 

4. Stability Analysis  

We define the common Lyapunov function expressing the robot position in polar 
coordinates (r(t), (t), (t)), with the reference origin in the target and positive from z-axis
anticlockwise, as 

(23)

This is a positive definite function, where rGi , Gi and Gi denote the desired value of the 
parameter in the subgoal position for each step (i=1,2,3). Due to the designed path, the value 
of is constant during the navigation. Although in the case of noisy data the value of 
could vary, it does not a ect the control, because the path is defined towards the target 
independently of the value of , thusV = 0. After di erentiating we obtain: 

(24)

We analyze the derivative Lyapunov candidate function in each step to show it is strictly 
negative. This analysis is valid whether if the goal is behind or in front of the initial position. 
Step 1. Here the robot performs a rotation with v=0. Thus, we only need to consider 

. The desired orientation is G1 = t . < 0 is guaranteed if (  G1 ) > 0 and then 
<0; or else, if (  G1)<0 and then >0. In Method I and II, the sign of is guaranteed to 

be  correct,  given  that  the sign of k  is selected as previously explained. In  Method  III, 
=–k ecx and, when ( G1)>0 then ecx>0 and <0, or ecx<0 and >0 when ( G1) < 0. 

Therefore <0.
Step 2. In this step the robot moves towards the target in a straight line path and we have 

. The sign of (r r G2) is always positive. Then, with cos(  – ) < 0 we have v>0
and with cos( )>0 we have v < 0. In Method II, the sign of v is guaranteed to be correct, 
given that the sign of kv is properly selected. In Method I and III, the velocity given by the 
control and with (8) is v = kv z nz / (dcos t), which gives the expected signs. Therefore r < 0. 
With  we have the same reasoning of step 1.  
Step 3. Similar to the reasoning of step 1, in this case, the sign of can be easily checked 
taking into account that  G3 =0 and h13= x sin t. Therefore < 0. 
So, we have shown that <0 for the controllers of the three methods. We have also 
asymptotic stability given that  is negative definite in all the steps.  
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5. Experimental Results  

Several experiments have been carried out with the controllers of the three methods 
presented by using virtual data. The simulated data is obtained by generating a virtual 
planar scene consisting of a distribution of random 3D points. The scene is projected to the 
image plane using a virtual camera, the size of the images is 640×480 pixels. In each loop of 
the control, the homography between the current and target image is computed from the 
matched points and the control law send the velocities (v, ) to the robot. In the 
experiments, we assume that the camera is centred on the robot pointing forwards. Figure 5 
shows the resulting path from di erent initial positions. The target is placed in 
(x(m),z(m), (deg))=(0,0,0°). The di erent initial positions behind the target are: 
( 3, 10, 30°), (0, 8, 40°) and (6, 6,0°). The results also show that the method works 
properly when the target is behind the initial robot position, moving the robot backwards in 
that case. The di erent initial positions used in this case are: ( 6, 4, 20°), (6, 8, 10°) and 
(5,2, 50°).

Figure  5. Simulations with target position at (0,0,0°) and di erent initial positions 

The performance of the three methods is exactly the same when using perfect data and quite 
similar when there is image noise. In Figure  6 two simulations are compared, one without 
noise, and the other, adding white noise to the image points with a standard deviation of 

=1 pixel using Method III. The evolution along time of the robot position and the 
homography elements is drawn. 
We have tested the controllers with odometry drift and with di erent values of image noise. 
The first row of Figure 7 shows the resulting evolution of the robot position when there is 
odometry drift in rotation of 1 deg/m. As it can be seen the controllers can cope properly 
with the drift error. Simulations with each method have been carried out using di erent 
levels of image noise. The results are shown in the second row of Figure  7 and it can be seen 
that the methods converge properly in spite of image noise. 
The control law of Method I needs the calibration parameter x of the camera whereas 
Method II and III do not use it. In Figure  8 we show the performance of the control to 
calibration errors. The value of the focal length of the controllers is fixed to f=6 mm while its 
real value is modified to see the final position error obtained for each Method, (first row of 
Figure  8). Besides, we have assumed that the principal point is in the centre of the image. In 
the second row of Figure  8, the value of x0 used in the controllers is supposed to be zero 
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while its real value is changed. Performance of Method I is sensitive to calibration errors as 
expected, this is because this control law is related directly with x and depends highly on 
its accuracy. The simulations show that Method II works properly in spite of calibration 
errors. Finally, results using Method III show that a rough calibration is enough for the 
convergence, because it is robust to focal length in accuracy and it is only a ected by 
calibration errors in the principal point. 

(a) Lateral motion (b) Forward motion (c) Robot rotation 

(d) h11 (e) h12 (f) h13

(g) h31 (h) h32 (i) h33

Figure  6. Simulation without noise (thick line) and with image white noise of =1 pixel (thin 
line). The initial position is (x,z, )=( 3, 10, 30°) and the target (0,0,0°)

The performance of the methods can be spoiled in some cases by the particular plane that 
generates the homography. Simulations using di erent planes are presented in Table 1. The 
planes are defined by the normal vector n=(nx,ny,nz)T , and a list of unitary normal vectors is 
selected to carried out the simulations with n =1. The final error obtained with each 
method is shown. The initial position is ( 3, 10, 30°) and the target is (0, 0, 0°). The results 
show that Method I and III need nz  0 to work properly. On the other hand, Method II 
needs ny  0.This is because the Methods are directly related with these parameters of n.
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Vertical planes are usually common in human environments; besides, in our monocular 
system, planes in front of the robot with dominant nz will be detected more easily. Methods 
I and III work properly in this case. If we constraint the homography plane detected to be 
the floor or the ceiling (any plane with ny  0 is enough) the Method II will also work 
properly.

Figure 7. (First row) Simulations with odometry drif of 1 deg/m. The evolution of one 
simulation in x, z and  is shown for each method. (Second row) Final error of different 
simulations varying the image noise 

Figure  8. Final error for each method in x,z and varying the focal length (first row) and 
varying the principal point coordinates (second row) 
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Table 1. Final error for each method in x(m), z(m) and (deg) varying the normal of the 
plane that generates the homography: n=(nx, ny, nz)T

6. Conclusions  

We have presented a new homography-based approach for visual control of mobile robots. 
The control design is directly based on the homography elements and deals with the motion 
constraints of the di erential drive vehicle. In our approach, called Shortest Path Control, the 
motion is designed to follow a straight line path. Taking advantage of this specific trajectory 
we have proposed a control law decoupling rotation and translation. Three di erent 
methods have been designed by choosing di erent homography elements. Their 
performance depends on the conditions of the plane or the calibration. The methods use 
neither the homography decomposition nor any measure of the 3D scene. Simulations 
shows the performance of the methods with odometry drift, image noise and calibration 
errors. Also, the influence of the plane that generates the homography is studied. 
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nx ny nz x z x z x z 
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1. Introduction     

Stereo vision is one of the most active research topics in machine vision. Finding 
corresponding points in different images of the same scene could be a tough procedure of 
depth extraction in this field. Correlation is one of the most common approaches that could 
be applied in this procedure. There are also methods that have been presented to reduce 
some existing errors associated with this approach. Here, a fuzzy model is demonstrated. 
Also the experimental results are presented based on a 3p laboratory robot and 
improvements are illustrated comparing with a neural network method by simulation 
outcomes.
Vision method at first was used for estimating robot errors more than one decade ago. So 
far, different companies and research centers have used for robot positioning, calibration, 
error estimation and error compensation with genetic algorithm, neural networks and fuzzy 
control algorithms. In general, recognition of 3D objects requires two or more appropriately 
defined 2D images. With this approximation many methods have been proposed such as 
structure from motion, (Seitz et al., 1995) (Taylor & Kriegman, 1995) stereo lenses 
correspondence and shape (Grosso et al., 1996) (Haralick & Shapiro, 1992). Achour and 
Benkhelif present a new approach for 3D scene reconstruction based on projective geometry 
without camera calibration. The contribution is to reduce the number of reference points to 
four points by exploiting some geometrical shapes contained in the scene (Achour & 
Benkhelif, 2001). In online applications, these methods have some problems. There is a 
difficulty in finding the correspondence between one image and the others. The most 
important step in stereo vision is to find two points of two or more images. A general 
correlation approach including errors is discussed in (Lopez & Plat, 2000). Also, fuzzy logic 
has applied in some cases such as process control, decision support systems, optimization 
and a large class of robotic manipulators and other mechanical systems (Hsu et al., 2001). 
Here, a fuzzy approach is applied to reduce existent errors to concern with the aspect of 
improving correlation based stereo vision by reducing errors on a set of points. The 
experiments are due to a Cartesian robot. So far a neural network approach has been used to 
get the optimum point in world coordinate for 3p robot(Korayem et al., 2001). Clearly there 
is no magic panacea for selecting a neural network for the best generalization and also 
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because of structure and foundation of neural networks, it has some errors. A fuzzy 
approach can be used to reduce these. 

2. Mapping relations in robots  

Stereo vision systems determine depth from two or more images which are taken at the 
same time from slightly different viewpoints. The most important and time consuming task 
for a stereo vision system is the registration of both images and the identification of 
corresponding pixels. Two pixels are corresponding when they represent the same point in 
the real world. A method based on stereo attempts to determine the correspondence for 
each pixel, which results in a dense depth map. Correlation is the basic method used to find 
corresponding pixels. Several real time systems have been developed using correlation 
based stereo(Konolige ,1997)( Matthies et al., 1995) (Volpe et al., 1996) (Guisse et al., 2000)  
Images of cameras are in two dimensional spaces and for each point with losing the depth in 
images can obtain one line in real world. The relations in stereo vision demonstrate that 
measure of depth’s points in each image is obtained as shown in(Gonzalez,1998): 

12 xx
BZ
+

−= λλ  (1) 

Which x1, x2 are x coordinate for one point in real world in each image of two cameras. λ
and β is focal distance and distance between two focal, respectively. In 3p robot two 
cameras are not in the same direction. It means each of x and z axis should be rotated and 
two rotation matrixes can be concatenated into a single matrix: 

θα RRR =  (2) 

According to modified relation of camera, commutative matrix is as follows: 
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Where αθ ,  are rotating angles of z and x axis, respectively. Also commutative axis can be 
obtained with the follow matrix: 

−
=

1000

100

0010

0001

0z
C  (4) 



Correlation Error Reduction of Images in Stereo Vision 
with Fuzzy Method and its Application on Cartesian Robot 599

Where
0z is coordinating of z in world coordinate. According to Eq. 3 and 4, we have: 
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Where x, y and z are coordinates of the image as a point in the real world. It is noted that 
these equations reduce to Eq. 1 when 0rrr0,ZYX 321000 ======  and 00== . Fig. 1 
shows the method of stereo vision in 3p robot. 

Figure 1.  Laboratory Cartesian 3p robot 

3. Correlation 

Correlation is one of the applied methods in stereo vision and it is discussed in this section. 

3.1 Correlation method  

Although correlation method can be explained with vector but working with a window’s 
form is commonly used. In its simplest form, the correlation between these two real 
functions ),( yxw , ),( yxf  is given by(Paulino et al., 2001): 

−−=
x y

tysxwyxftsc ),(),(),( 1,...,1,0,1,...,1,0 −=−= MsNt  (7) 
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 Where ),( yxf is a digital image with size NM × and ),( yxw is a similar region with size 
KJ × ( MJ  and NK ). The correlation function given in Eq. 7 has drawback, because it is 

sensitive to scale changes in the amplitude of ),( yxf and ),( yxw . A method that frequently 
used to overcome this difficulty is to perform matching via the correlation coefficient, 
defined as: 

−−−−

−−−−
=

y x yx

yx

wtysxwyxfyxf

wtysxwyxfyxf
ts

2/122 }]),([[)],(),([{

]),()][,(),([

),(γ  (8) 

1,...,1,0,1,...,1,0 −=−= MsNt

Where w  is the average intensity of the mask (this value is computed only once), ),( yxf  is 
the average value of ),( yxf  in the region coincident with ),( yxw , and the summations are 
taken over the common coordinate to both f and w. It is not difficult to show that ),( tsc is
scaled to the range from -1 to 1, independent of scale changes in the amplitude of 

),( yxf and ),( yxw . If the functions are in the same size, this approach can be more efficient 
than a direct implementation of correlation in the spatial domain. It is important to note that 
the dimension of ),( yxw  is usually smaller than ),( yxf  in implementing Eq. 7. 

3.2 Problems of using correlation based stereo vision 

Figure 2. The correlation method 

Correlation is used with a fixed rectangular window containing image as shown in Fig.2. 
The image will be correlated with a second window swiping the area of image. The possible 
trajectories are defined by the minimal possible existing distance between the camera and 
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object, which suggests the maximum disparity. The position with the highest correlation 
value determines the pixel that corresponds to the pixel of interest. Larger correlation 
windows increase the reliability by averaging over a larger area, besides reducing the effects 
of noise. Generally, the choice of the correlation window size is a trade off between 
increasing reliability in areas with constant depth and decreasing errors where depth 
changes. The use of a smaller correlation window reduces the problem, because smaller 
window does not overlap the depth discontinuity to the same extent(Paulino et al., 2001). 

4. Fuzzy System 

Fuzzy logic controller utilizes fuzzy to convert the linguistic control strategy based on 
expert knowledge into an automatic control strategy. This section describes the design of 
fuzzy system for vision of 3p robot. It also discusses the heuristic approach that has been 
applied to determine the number of necessary fuzzy input and output set. In the first step, 
the border points are obtained by exploiting some geometrical relations. Then the fuzzy 
system is applied to points of correlation area. The best point that is achieved with heuristic 
method is shown in Fig.3. 

Figure 3. Getting the best point of correlation area 

4.1 Getting the border points 

The goal is to find the best point of correlation area. In this case, a heuristic method is used 
to find four points. These points are maximum and minimum coordinates of each axis’ 
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correlation area. Then, Eq.9 gives the distance of correlation from these four points as 
follows: 

2

21

2

21

2

2121 )()()( zzyyxx −+−+−=− XX  (9) 

Where
21, XX  are the coordinate of two points(Hirschuller et al., 2001). 

4.2 Fuzzy Method 

Recently fuzzy system approaches have achieved superior performance. The identification 
of fuzzy models from input-output data of the process normally lead to representations 
which are difficult to understand. Fuzzy logic has had great success in running machinery 
that is computer operated. For instance, fuzzy systems used to formulate the human’s 
knowledge. Fuzzy set theory and fuzzy logic have evolved into powerful tools for managing 
uncertainties inherent in complex systems(Bender ,1996) (Zhang et al., 1999) (Alexander 
,1996). In general, building a fuzzy system consists of three basic steps: structure 
identification (variable selection, partitioning input and output spaces and choosing 
membership functions), parameter estimation, and model validation. Fuzzy systems create a 
systematic process for replacing one knowledge base with a nonlinear mapping. Because of 
this, we will be able to use systems according to knowledge fuzzy system in engineering 
applications(Wang ,1997).. The area of correlation points is divided to four parts as shown in 
Fig. 4. 

Figure 4. The partions of correlation area 
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4.2.1 Fuzzification 

The computational technique of inputs of fuzzy system is demonstrated in Fig.5. The 
distances of the centers of images from best point are 1d  and 2d , respectively. The 
triangular membership functions have been used. Four inputs in the fuzzy system are the 
distances of center of each area from the images (Fig. 5). 
The fuzzy controller employs four inputs by using Euclidian distance, shown in Eq. 9, of 
each point at each partition of correlation area from the image center. This fuzzy controller 
has only one control output. 

Figure 5. Distances of the centers from best point of images (heuristic method) 

4.2.2 Fuzzy Rule Base 

The IF part of rule bases include the ratio of the distances of central point in each area from 
the image center. The THEN part of these rules is suggested for the center of correlation 
area:
IF input 1

2

1

d
dr = THEN   output   is center of area (1) or center of area (2). 

IF input 1
2

1 ==
d
dr THEN output is center of correlation area. 

IF   input 1
2

1

d
dr = THEN   output is center of area (3) or center of area (4). 

The above rules can be dedicated for each area. It means the total number of rules is 12. 

4.2.3 Defuzzification 

The Eq. 10 is applied to defuzzify the fuzzy control rules in the defuzzification step. The 
defuzzifier which is applied is the center of gravity. 
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5. Algorithm 

The diagram belongs to our approach is demonstrated in this section. All the processes 
described before are shown as an algorithmic approach in Fig. 7. 
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Figure 7. The Processing Diagram 

6. Testing Irregular Objects 

This method has been used for an unformed object. The edges of images and correlation of 
images is demonstrated in Fig.8 and 9, respectively. 

Figure 8. (Left to right) images of: camera 1, camera 2, and binary images: 1, 2, and 
correlation of images 
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Figure 9. Exploited points of an irregular object 

7. Simulation 

At first, the implemented software captures two images from two existing cameras 
belonging to the robot. Then the correlation algorithm gives a set of points to be used in next 
processing steps. Then, the heuristic method achieves all its necessary data as the correlated 
points of the correlation process and determines four extreme points to compute available 
distances. The fuzzy method is also used to find the best point in this case. Fig. 10 
demonstrates the steps to get the correlation points. Finally the best coordinates are 
accessible (Fig. 11). 

Figure 10. Correlation computin 
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Figure 11. Computation of the best point 

8. Experimental Results 

In this study, the accuracy of our approach was compared with other approaches based on 
neural networks on 3P robots (Lopez & Plat, 2000) (Wang, 1992) (Hahnel et al., 2001).which 
contains some errors according to the structure and foundation of neural networks. Table.1 
compares neural network and fuzzy methods on stereo vision for a 3P robot. It 
demonstrates that the fuzzy method is more reliable. 

Type of Object Circle Cylinder Cubic Rectangle Cubic Square 

Neural Network 98.3% 98% 97% 97.2% 

Fuzzy System 100% 100% 100% 100% 

Table 1.  Comparison of neural network with fuzzy system in 3p robot 

9. Conclusions 

Here, applying a fuzzy model in stereo vision of a 3p robot is presented. According to the 
simulation results, correlation error is reduced where the best result in a 3p robot applying 
neural networks is about 97% of correctness, but using a fuzzy approach, let us to achieve 
up to 100%. It is obvious that all these results are achieved by simulated software and 
different kinds of errors could be occurred in real environment. Some of them are discussed 
in(Korayem et al., 2001).This fuzzy model can be applied to a large class of robotic 
manipulators. 
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